I have a dataframe with columns A,B. I need to create a column C such that for every record / row:
C = max(A, B).
How should I go about doing this?
You can get the maximum like this:
>>> import pandas as pd
>>> df = pd.DataFrame({"A": [1,2,3], "B": [-2, 8, 1]})
>>> df
A B
0 1 -2
1 2 8
2 3 1
>>> df[["A", "B"]]
A B
0 1 -2
1 2 8
2 3 1
>>> df[["A", "B"]].max(axis=1)
0 1
1 8
2 3
and so:
>>> df["C"] = df[["A", "B"]].max(axis=1)
>>> df
A B C
0 1 -2 1
1 2 8 8
2 3 1 3
If you know that "A" and "B" are the only columns, you could even get away with
>>> df["C"] = df.max(axis=1)
And you could use .apply(max, axis=1) too, I guess.
#DSM's answer is perfectly fine in almost any normal scenario. But if you're the type of programmer who wants to go a little deeper than the surface level, you might be interested to know that it is a little faster to call numpy functions on the underlying .to_numpy() (or .values for <0.24) array instead of directly calling the (cythonized) functions defined on the DataFrame/Series objects.
For example, you can use ndarray.max() along the first axis.
# Data borrowed from #DSM's post.
df = pd.DataFrame({"A": [1,2,3], "B": [-2, 8, 1]})
df
A B
0 1 -2
1 2 8
2 3 1
df['C'] = df[['A', 'B']].values.max(1)
# Or, assuming "A" and "B" are the only columns,
# df['C'] = df.values.max(1)
df
A B C
0 1 -2 1
1 2 8 8
2 3 1 3
If your data has NaNs, you will need numpy.nanmax:
df['C'] = np.nanmax(df.values, axis=1)
df
A B C
0 1 -2 1
1 2 8 8
2 3 1 3
You can also use numpy.maximum.reduce. numpy.maximum is a ufunc (Universal Function), and every ufunc has a reduce:
df['C'] = np.maximum.reduce(df['A', 'B']].values, axis=1)
# df['C'] = np.maximum.reduce(df[['A', 'B']], axis=1)
# df['C'] = np.maximum.reduce(df, axis=1)
df
A B C
0 1 -2 1
1 2 8 8
2 3 1 3
np.maximum.reduce and np.max appear to be more or less the same (for most normal sized DataFrames)—and happen to be a shade faster than DataFrame.max. I imagine this difference roughly remains constant, and is due to internal overhead (indexing alignment, handling NaNs, etc).
The graph was generated using perfplot. Benchmarking code, for reference:
import pandas as pd
import perfplot
np.random.seed(0)
df_ = pd.DataFrame(np.random.randn(5, 1000))
perfplot.show(
setup=lambda n: pd.concat([df_] * n, ignore_index=True),
kernels=[
lambda df: df.assign(new=df.max(axis=1)),
lambda df: df.assign(new=df.values.max(1)),
lambda df: df.assign(new=np.nanmax(df.values, axis=1)),
lambda df: df.assign(new=np.maximum.reduce(df.values, axis=1)),
],
labels=['df.max', 'np.max', 'np.maximum.reduce', 'np.nanmax'],
n_range=[2**k for k in range(0, 15)],
xlabel='N (* len(df))',
logx=True,
logy=True)
For finding max among multiple columns would be:
df[['A','B']].max(axis=1).max(axis=0)
Example:
df =
A B
timestamp
2019-11-20 07:00:16 14.037880 15.217879
2019-11-20 07:01:03 14.515359 15.878632
2019-11-20 07:01:33 15.056502 16.309152
2019-11-20 07:02:03 15.533981 16.740607
2019-11-20 07:02:34 17.221073 17.195145
print(df[['A','B']].max(axis=1).max(axis=0))
17.221073
I have two dataframes. The dataframes as follows:
df1 is
numbers
user_id
0 9154701244
1 9100913773
2 8639988041
3 8092118985
4 8143131334
5 9440609551
6 8309707235
7 8555033317
8 7095451372
9 8919206985
10 8688960416
11 9676230089
12 7036733390
13 9100914771
it's shape is (14,1)
df2 is
user_id numbers names type duration date_time
0 9032095748 919182206378 ramesh incoming 23 233445445
1 9032095748 918919206983 suresh incoming 45 233445445
2 9032095748 919030785187 rahul incoming 45 233445445
3 9032095748 916281206641 jay incoming 67 233445445
4 jakfnka998nknk 9874654411 query incoming 25 8571228412
5 jakfnka998nknk 9874654112 form incoming 42 678565487
6 jakfnka998nknk 9848022238 json incoming 10 89547212765
7 ukajhj9417fka 9984741215 keert incoming 32 8548412664
8 ukajhj9417fka 9979501984 arun incoming 21 7541344646
9 ukajhj9417fka 95463241 paru incoming 42 945151215451
10 ukajknva939o 7864621215 hari outgoing 34 49829840920
and it's shape is (10308,6)
Here in df1, the column name numbers are having the multiple unique numbers. These numbers are available in df2 and those are repeated depends on the duration. I want to get those data who all are existed in df2 based on the numbers which are available in df1.
Here is the code I've tried to get this but I'm not able to figure it out how it can be solved using pandas.
df = pd.concat([df1, df2]) # concat dataframes
df = df.reset_index(drop=True) # reset the index
df_gpby = df.groupby(list(df.columns)) #group by
idx = [x[0] for x in df_gpby.groups.values() if len(x) == 1] #reindex
df = df.reindex(idx)
It gives me only unique numbers column which are there in df2. But I need to get all the data including other columns from the second dataframe.
It would be great that anyone can help me on this. Thanks in advance.
Here is a sample dataframe, I created keeping the gist same.
df1=pd.DataFrame({"numbers":[123,1234,12345,5421]})
df2=pd.DataFrame({"numbers":[123,1234,12345,123,123,45643],"B":[1,2,3,4,5,6],"C":[2,3,4,5,6,7]})
final_df=df2[df2.numbers.isin(df1.numbers)]
Output DataFrame The result is all unique numbers that are present in df1 and present in df2 will be returned
numbers B C
0 123 1 2
1 1234 2 3
2 12345 3 4
3 123 4 5
4 123 5 6
Good afternoon,
I'm iterating through a huge Dataframe (104062 x 20) with the following code:
import pandas as pd
df_tot = pd.read_csv("C:\\Users\\XXXXX\\Desktop\\XXXXXXX\\LOGS\\DF_TOT.txt", header=None)
df_tot = df_tot.replace("\[", "", regex=True)
df_tot = df_tot.replace("\]", "", regex=True)
df_tot = df_tot.replace("\'", "", regex=True)
i = 0
while i < len(df_tot):
to_compare = df_tot.iloc[i].tolist()
for j in range(len(df_tot)):
if to_compare == df_tot.iloc[j].tolist():
if i == j:
print('Matched itself.')
else:
print('MATCH FOUND - row: {} --- match row: {}'.format(i,j))
i += 1
I am looking to optimize time spent for each iteration as much as possible, since this code iterates 104062(^2) times. (More or less ten billions iterations).
With my computing power, time spent comparing to_compare in the whole DF is around 26 seconds.
I want to clarify that in case it would be needed, the whole code could be changed with faster constructs.
As usual, Thanks in advance.
as far as i understand, You just want to find duplicated rows.
Sample data(2 last rows are duplicated):
In [1]: df = pd.DataFrame([[1,2], [3,4], [5,6], [7,8], [1,2], [5,6]], columns=['a', 'b'])
df
Out[1]:
a b
0 1 2
1 3 4
2 5 6
3 7 8
4 1 2
5 5 6
This will return all duplicated rows:
In [2]: df[df.duplicated(keep=False)]
Out[2]:
a b
0 1 2
2 5 6
4 1 2
5 5 6
And indexes, grouped by duplicated row:
In [3]: df[df.duplicated(keep=False)].reset_index().groupby(list(df.columns), as_index=False)['index'].apply(list)
Out[3]: a b
1 2 [0, 4]
5 6 [2, 5]
You can also just remove duplicates from dataframe:
In [4]: df.drop_duplicates()
Out[4]:
a b
0 1 2
1 3 4
2 5 6
3 7 8
df= pd.DataFrame({'days': [0,31,45,35,19,70,80 ]})
df['range'] = pd.cut(df.days, [0,30,60])
df
Here as code is reproduced , where pd.cut is used to convert a numerical column to categorical column . pd.cut usually gives category as per the list passed [0,30,60]. In this row's 0 , 5 & 6 categorized as Nan which is beyond the [0,30,60]. what i want is 0 should categorized as <0 & 70 should categorized as >60 and similarly 80 should categorized as >60 respectively, If possible dynamic text labeling of A,B,C,D,E depending on no of category created.
For the first part, adding -np.inf and np.inf to the bins will ensure that everything gets a bin:
In [5]: df= pd.DataFrame({'days': [0,31,45,35,19,70,80]})
...: df['range'] = pd.cut(df.days, [-np.inf, 0, 30, 60, np.inf])
...: df
...:
Out[5]:
days range
0 0 (-inf, 0.0]
1 31 (30.0, 60.0]
2 45 (30.0, 60.0]
3 35 (30.0, 60.0]
4 19 (0.0, 30.0]
5 70 (60.0, inf]
6 80 (60.0, inf]
For the second, you can use .cat.codes to get the bin index and do some tweaking from there:
In [8]: df['range'].cat.codes.apply(lambda x: chr(x + ord('A')))
Out[8]:
0 A
1 C
2 C
3 C
4 B
5 D
6 D
dtype: object
I have a very large dataframe (around 1 million rows) with data from an experiment (60 respondents).
I would like to split the dataframe into 60 dataframes (a dataframe for each participant).
In the dataframe, data, there is a variable called 'name', which is the unique code for each participant.
I have tried the following, but nothing happens (or execution does not stop within an hour). What I intend to do is to split the data into smaller dataframes, and append these to a list (datalist):
import pandas as pd
def splitframe(data, name='name'):
n = data[name][0]
df = pd.DataFrame(columns=data.columns)
datalist = []
for i in range(len(data)):
if data[name][i] == n:
df = df.append(data.iloc[i])
else:
datalist.append(df)
df = pd.DataFrame(columns=data.columns)
n = data[name][i]
df = df.append(data.iloc[i])
return datalist
I do not get an error message, the script just seems to run forever!
Is there a smart way to do it?
Can I ask why not just do it by slicing the data frame. Something like
#create some data with Names column
data = pd.DataFrame({'Names': ['Joe', 'John', 'Jasper', 'Jez'] *4, 'Ob1' : np.random.rand(16), 'Ob2' : np.random.rand(16)})
#create unique list of names
UniqueNames = data.Names.unique()
#create a data frame dictionary to store your data frames
DataFrameDict = {elem : pd.DataFrame() for elem in UniqueNames}
for key in DataFrameDict.keys():
DataFrameDict[key] = data[:][data.Names == key]
Hey presto you have a dictionary of data frames just as (I think) you want them. Need to access one? Just enter
DataFrameDict['Joe']
Firstly your approach is inefficient because the appending to the list on a row by basis will be slow as it has to periodically grow the list when there is insufficient space for the new entry, list comprehensions are better in this respect as the size is determined up front and allocated once.
However, I think fundamentally your approach is a little wasteful as you have a dataframe already so why create a new one for each of these users?
I would sort the dataframe by column 'name', set the index to be this and if required not drop the column.
Then generate a list of all the unique entries and then you can perform a lookup using these entries and crucially if you only querying the data, use the selection criteria to return a view on the dataframe without incurring a costly data copy.
Use pandas.DataFrame.sort_values and pandas.DataFrame.set_index:
# sort the dataframe
df.sort_values(by='name', axis=1, inplace=True)
# set the index to be this and don't drop
df.set_index(keys=['name'], drop=False,inplace=True)
# get a list of names
names=df['name'].unique().tolist()
# now we can perform a lookup on a 'view' of the dataframe
joe = df.loc[df.name=='joe']
# now you can query all 'joes'
You can convert groupby object to tuples and then to dict:
df = pd.DataFrame({'Name':list('aabbef'),
'A':[4,5,4,5,5,4],
'B':[7,8,9,4,2,3],
'C':[1,3,5,7,1,0]}, columns = ['Name','A','B','C'])
print (df)
Name A B C
0 a 4 7 1
1 a 5 8 3
2 b 4 9 5
3 b 5 4 7
4 e 5 2 1
5 f 4 3 0
d = dict(tuple(df.groupby('Name')))
print (d)
{'b': Name A B C
2 b 4 9 5
3 b 5 4 7, 'e': Name A B C
4 e 5 2 1, 'a': Name A B C
0 a 4 7 1
1 a 5 8 3, 'f': Name A B C
5 f 4 3 0}
print (d['a'])
Name A B C
0 a 4 7 1
1 a 5 8 3
It is not recommended, but possible create DataFrames by groups:
for i, g in df.groupby('Name'):
globals()['df_' + str(i)] = g
print (df_a)
Name A B C
0 a 4 7 1
1 a 5 8 3
Easy:
[v for k, v in df.groupby('name')]
Groupby can helps you:
grouped = data.groupby(['name'])
Then you can work with each group like with a dataframe for each participant. And DataFrameGroupBy object methods such as (apply, transform, aggregate, head, first, last) return a DataFrame object.
Or you can make list from grouped and get all DataFrame's by index:
l_grouped = list(grouped)
l_grouped[0][1] - DataFrame for first group with first name.
In addition to Gusev Slava's answer, you might want to use groupby's groups:
{key: df.loc[value] for key, value in df.groupby("name").groups.items()}
This will yield a dictionary with the keys you have grouped by, pointing to the corresponding partitions. The advantage is that the keys are maintained and don't vanish in the list index.
The method in the OP works, but isn't efficient. It may have seemed to run forever, because the dataset was long.
Use .groupby on the 'method' column, and create a dict of DataFrames with unique 'method' values as the keys, with a dict-comprehension.
.groupby returns a groupby object, that contains information about the groups, where g is the unique value in 'method' for each group, and d is the DataFrame for that group.
The value of each key in df_dict, will be a DataFrame, which can be accessed in the standard way, df_dict['key'].
The original question wanted a list of DataFrames, which can be done with a list-comprehension
df_list = [d for _, d in df.groupby('method')]
import pandas as pd
import seaborn as sns # for test dataset
# load data for example
df = sns.load_dataset('planets')
# display(df.head())
method number orbital_period mass distance year
0 Radial Velocity 1 269.300 7.10 77.40 2006
1 Radial Velocity 1 874.774 2.21 56.95 2008
2 Radial Velocity 1 763.000 2.60 19.84 2011
3 Radial Velocity 1 326.030 19.40 110.62 2007
4 Radial Velocity 1 516.220 10.50 119.47 2009
# Using a dict-comprehension, the unique 'method' value will be the key
df_dict = {g: d for g, d in df.groupby('method')}
print(df_dict.keys())
[out]:
dict_keys(['Astrometry', 'Eclipse Timing Variations', 'Imaging', 'Microlensing', 'Orbital Brightness Modulation', 'Pulsar Timing', 'Pulsation Timing Variations', 'Radial Velocity', 'Transit', 'Transit Timing Variations'])
# or a specific name for the key, using enumerate (e.g. df1, df2, etc.)
df_dict = {f'df{i}': d for i, (g, d) in enumerate(df.groupby('method'))}
print(df_dict.keys())
[out]:
dict_keys(['df0', 'df1', 'df2', 'df3', 'df4', 'df5', 'df6', 'df7', 'df8', 'df9'])
df_dict['df1].head(3) or df_dict['Astrometry'].head(3)
There are only 2 in this group
method number orbital_period mass distance year
113 Astrometry 1 246.36 NaN 20.77 2013
537 Astrometry 1 1016.00 NaN 14.98 2010
df_dict['df2].head(3) or df_dict['Eclipse Timing Variations'].head(3)
method number orbital_period mass distance year
32 Eclipse Timing Variations 1 10220.0 6.05 NaN 2009
37 Eclipse Timing Variations 2 5767.0 NaN 130.72 2008
38 Eclipse Timing Variations 2 3321.0 NaN 130.72 2008
df_dict['df3].head(3) or df_dict['Imaging'].head(3)
method number orbital_period mass distance year
29 Imaging 1 NaN NaN 45.52 2005
30 Imaging 1 NaN NaN 165.00 2007
31 Imaging 1 NaN NaN 140.00 2004
For more information about the seaborn datasets
NASA Exoplanets
Alternatively
This is a manual method to create separate DataFrames using pandas: Boolean Indexing
This is similar to the accepted answer, but .loc is not required.
This is an acceptable method for creating a couple extra DataFrames.
The pythonic way to create multiple objects, is by placing them in a container (e.g. dict, list, generator, etc.), as shown above.
df1 = df[df.method == 'Astrometry']
df2 = df[df.method == 'Eclipse Timing Variations']
In [28]: df = DataFrame(np.random.randn(1000000,10))
In [29]: df
Out[29]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 10 columns):
0 1000000 non-null values
1 1000000 non-null values
2 1000000 non-null values
3 1000000 non-null values
4 1000000 non-null values
5 1000000 non-null values
6 1000000 non-null values
7 1000000 non-null values
8 1000000 non-null values
9 1000000 non-null values
dtypes: float64(10)
In [30]: frames = [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
In [31]: %timeit [ df.iloc[i*60:min((i+1)*60,len(df))] for i in xrange(int(len(df)/60.) + 1) ]
1 loops, best of 3: 849 ms per loop
In [32]: len(frames)
Out[32]: 16667
Here's a groupby way (and you could do an arbitrary apply rather than sum)
In [9]: g = df.groupby(lambda x: x/60)
In [8]: g.sum()
Out[8]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16667 entries, 0 to 16666
Data columns (total 10 columns):
0 16667 non-null values
1 16667 non-null values
2 16667 non-null values
3 16667 non-null values
4 16667 non-null values
5 16667 non-null values
6 16667 non-null values
7 16667 non-null values
8 16667 non-null values
9 16667 non-null values
dtypes: float64(10)
Sum is cythonized that's why this is so fast
In [10]: %timeit g.sum()
10 loops, best of 3: 27.5 ms per loop
In [11]: %timeit df.groupby(lambda x: x/60)
1 loops, best of 3: 231 ms per loop
The method based on list comprehension and groupby- Which stores all the split dataframe in list variable and can be accessed using the index.
Example
ans = [pd.DataFrame(y) for x, y in DF.groupby('column_name', as_index=False)]
ans[0]
ans[0].column_name
You can use the groupby command, if you already have some labels for your data.
out_list = [group[1] for group in in_series.groupby(label_series.values)]
Here's a detailed example:
Let's say we want to partition a pd series using some labels into a list of chunks
For example, in_series is:
2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 5, dtype: float64
And its corresponding label_series is:
2019-07-01 08:00:00 1
2019-07-01 08:02:00 1
2019-07-01 08:04:00 2
2019-07-01 08:06:00 2
2019-07-01 08:08:00 2
Length: 5, dtype: float64
Run
out_list = [group[1] for group in in_series.groupby(label_series.values)]
which returns out_list a list of two pd.Series:
[2019-07-01 08:00:00 -0.10
2019-07-01 08:02:00 1.16
Length: 2, dtype: float64,
2019-07-01 08:04:00 0.69
2019-07-01 08:06:00 -0.81
2019-07-01 08:08:00 -0.64
Length: 3, dtype: float64]
Note that you can use some parameters from in_series itself to group the series, e.g., in_series.index.day
here's a small function which might help some (efficiency not perfect probably, but compact + more or less easy to understand):
def get_splited_df_dict(df: 'pd.DataFrame', split_column: 'str'):
"""
splits a pandas.DataFrame on split_column and returns it as a dict
"""
df_dict = {value: df[df[split_column] == value].drop(split_column, axis=1) for value in df[split_column].unique()}
return df_dict
it converts a DataFrame to multiple DataFrames, by selecting each unique value in the given column and putting all those entries into a separate DataFrame.
the .drop(split_column, axis=1) is just for removing the column which was used to split the DataFrame. the removal is not necessary, but can help a little to cut down on memory usage after the operation.
the result of get_splited_df_dict is a dict, meaning one can access each DataFrame like this:
splitted = get_splited_df_dict(some_df, some_column)
# accessing the DataFrame with 'some_column_value'
splitted[some_column_value]
The existing answers cover all good cases and explains fairly well how the groupby object is like a dictionary with keys and values that can be accessed via .groups. Yet more methods to do the same job as the existing answers are:
Create a list by unpacking the groupby object and casting it to a dictionary:
dict([*df.groupby('Name')]) # same as dict(list(df.groupby('Name')))
Create a tuple + dict (this is the same as #jezrael's answer):
dict((*df.groupby('Name'),))
If we only want the DataFrames, we could get the values of the dictionary (created above):
[*dict([*df.groupby('Name')]).values()]
I had similar problem. I had a time series of daily sales for 10 different stores and 50 different items. I needed to split the original dataframe in 500 dataframes (10stores*50stores) to apply Machine Learning models to each of them and I couldn't do it manually.
This is the head of the dataframe:
I have created two lists;
one for the names of dataframes
and one for the couple of array [item_number, store_number].
list=[]
for i in range(1,len(items)*len(stores)+1):
global list
list.append('df'+str(i))
list_couple_s_i =[]
for item in items:
for store in stores:
global list_couple_s_i
list_couple_s_i.append([item,store])
And once the two lists are ready you can loop on them to create the dataframes you want:
for name, it_st in zip(list,list_couple_s_i):
globals()[name] = df.where((df['item']==it_st[0]) &
(df['store']==(it_st[1])))
globals()[name].dropna(inplace=True)
In this way I have created 500 dataframes.
Hope this will be helpful!