I'm attempting to add Gaussian noise to a single channel of an image.
import cv2 as cv
import numpy as np
img1 = cv.imread('input/foo.png')
img1_blue, img1_green, img1_red = cv.split(img1)
img1_h, img1_w, _ = img1.shape
s = 5
noise = np.random.normal(0, s, (img1_h, img1_w))
img1_gn = img1_green + noise
print(img1_green.shape) # (512, 384)
print(img1_gn.shape) # (512, 384)
print(img1_blue.shape) # (512, 384)
img1_g_noise = cv.merge((img1_blue, img1_gn, img1_red))
This results in the following error:
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-34-049cf9e65133> in <module>
13
---> 14 img1_g_noise = cv.merge((img1_blue, img1_gn, img1_red))
15
error: OpenCV(3.4.5) /io/opencv/modules/core/src/merge.cpp:293: error: (-215:Assertion failed) mv[i].size == mv[0].size && mv[i].depth() == depth in function 'merge'
I'm not sure how or why this is happening. The resulting noisy green channel has the same dimensions and type as the other two channels. Recombining the original green channel works just fine. Any steering direction is appreciated, and thank you in advance.
This is because noise and channel datatype mismatch. numpy matrix has default datatype of numpy.float64. and you have to define noise in type of rach channel by adding .astype(img1_blue.dtype) to noise defenition.
edited code :
import cv2 as cv
import numpy as np
img1 = cv.imread('list.JPG')
img1_blue, img1_green, img1_red = cv.split(img1)
img1_h, img1_w, _ = img1.shape
s = 5
noise = np.random.normal(0, s, (img1_h, img1_w)).astype(img1_blue.dtype)
img1_gn = img1_green + noise
print(img1_green.shape) # (512, 384)
print(img1_gn.shape) # (512, 384)
print(img1_blue.shape) # (512, 384)
img1_g_noise = cv.merge((img1_blue, img1_gn, img1_red))
cv.imshow("img1_g_noise",img1_g_noise)
cv2.waitKey()
this is the dtype problem.
by default, the image_blue and image_red are uint8 type;
but the noise is float16 type.
Solution1
you can change the noise to 'unint8` type by:
noise = noise.astype('image_red.type')
but this will let the noise loss much information.
Solution2
you can also change the all of the rgb channel to float16 dtype, by adding this two line:
img1_blue = img1_blue.astype(img1_gn.dtype)
img1_red = img1_red.astype(img1_gn.dtype)
Related
I'm trying to just apply maxpool2d (from torch.nn) on a single image (not as a maxpool layer). Here is my code right now:
name = 'astronaut'
imshow(images[name], name)
img = images[name]
# pool of square window of size=3, stride=1
m = nn.MaxPool2d(3,stride = 1)
img_transform = torch.Tensor(images[name])
plt.imshow(m(img_transform).view((512,510)))
The issue is, this code gives me a very green image as a result. I am sure the problem is with the dimensions of view, but I was unable to find how to apply maxpool to just one image so I couldn't fix it. The dimension of the image I'm considering is 512x512. The arguments for view make no sense for me right now, it's just the only number that gives a result...
If for example, I gave 512,512 as the argument for view, I get the following error:
RuntimeError: shape '[512, 512]' is invalid for input of size 261120
If anyone can tell me how to apply maxpool, avgpool, or minpool to an image and display the result I would be super grateful!
Thanks (:
Assuming your image is a numpy.array upon loading (please see comments for explanation of each step):
import numpy as np
import torch
# Assuming you have 3 color channels in your image
# Assuming your data is in Width, Height, Channels format
numpy_img = np.random.randint(low=0, high=255, size=(512, 512, 3))
# Transform to tensor
tensor_img = torch.from_numpy(numpy_img)
# PyTorch takes images in format Channels, Width, Height
# We have to switch their dimensions using `permute`
tensor_img = tensor_img.permute(2, 0, 1)
tensor_img.shape # Shape [3, 512, 512]
# Layers always need batch as first dimension (even for one image)
# unsqueeze will add it for you
ready_tensor_img = tensor_img.unsqueeze(dim=0)
ready_tensor_img.shape # Shape [1, 3, 512, 512]
pooling = torch.nn.MaxPool2d(kernel_size=3, stride=1)
# You need to cast your image to float as
# pooling is not implemented for Tensors of type long
new_img = pooling(ready_tensor_img.float())
If your image is black and white you would need shape [1, 1, 512, 512] (single channel only), you can't leave/squeeze those dimensions, they always have to be there for any torch.nn.Module!
To transform tensor into image again you could use similar steps:
# Cast to long and squeeze batch dimension
no_batch = new_img.long().squeeze(dim=0)
# Unpermute
width_height_channels = no_batch.permute(1, 2, 0)
width_height_channels.shape # Shape: [510, 510, 3]
# Cast to numpy and you have your image
final_image = width_height_channels.numpy()
I would like to deform/scale a three dimensional numpy array in one dimension. I will visualize my problem in 2D:
I have the original image, which is a 2D numpy array:
Then I want to deform/scale it for some factor in dimension 0, or horizontal dimension:
For PIL images, there are a lot of solutions, for example in pytorch, but what if I have a numpy array of shapes (w, h, d) = (288, 288, 468)? I would like to upsample the width with a factor of 1.04, for example, to (299, 288, 468). Each cell contains a normalized number between 0 and 1.
I am not sure, if I am simply not looking for the correct vocabulary, if I try to search online. So also correcting my question would help. Or tell me the mathematical background of this problem, then I can write the code on my own.
Thank you!
You can repeat the array along the specific axis a number of times equal to ceil(factor) where factor > 1 and then evenly space indices on the stretched dimension to select int(factor * old_length) elements. This does not perform any kind of interpolation but just repeats some of the elements:
import math
import cv2
import numpy as np
from scipy.ndimage import imread
img = imread('/tmp/example.png')
print(img.shape) # (512, 512)
axis = 1
factor = 1.25
stretched = np.repeat(img, math.ceil(factor), axis=axis)
print(stretched.shape) # (512, 1024)
indices = np.linspace(0, stretched.shape[axis] - 1, int(img.shape[axis] * factor))
indices = np.rint(indices).astype(int)
result = np.take(stretched, indices, axis=axis)
print(result.shape) # (512, 640)
cv2.imwrite('/tmp/stretched.png', result)
This is the result (left is original example.png and right is stretched.png):
Looks like it is as easy as using the torch.nn.functional.interpolate functional from pytorch and choosing 'trilinear' as interpolation mode:
import torch
PET = torch.tensor(data)
print("Old shape = {}".format(PET.shape))
scale_factor_x = 1.4
# Scaling.
PET = torch.nn.functional.interpolate(PET.unsqueeze(0).unsqueeze(0),\
scale_factor=(scale_factor_x, 1, 1), mode='trilinear').squeeze().squeeze()
print("New shape = {}".format(PET.shape))
output:
>>> Old shape = torch.Size([288, 288, 468])
>>> New shape = torch.Size([403, 288, 468])
I verified the results by looking at the data, but I can't show them here due to data privacy. Sorry!
This is an example for linear up-sampling a 3D Image with scipy.interpolate, hope it helps.
(I worked quite a lot with np.meshgrid here, if you not familiar with it i recently explained it here)
import numpy as np
import matplotlib.pyplot as plt
import scipy
from scipy.interpolate import RegularGridInterpolator
# should be 1.3.0
print(scipy.__version__)
# =============================================================================
# producing a test image "image3D"
# =============================================================================
def some_function(x,y,z):
# output is a 3D Gaussian with some periodic modification
# its only for testing so this part is not impotent
out = np.sin(2*np.pi*x)*np.cos(np.pi*y)*np.cos(4*np.pi*z)*np.exp(-(x**2+y**2+z**2))
return out
# define a grid to evaluate the function on.
# the dimension of the 3D-Image will be (20,20,20)
N = 20
x = np.linspace(-1,1,N)
y = np.linspace(-1,1,N)
z = np.linspace(-1,1,N)
xx, yy, zz = np.meshgrid(x,y,z,indexing ='ij')
image3D = some_function(xx,yy,zz)
# =============================================================================
# plot the testimage "image3D"
# you will see 5 images that corresponds to the slicing of the
# z-axis similar to your example picture_
# https://sites.google.com/site/linhvtlam2/fl7_ctslices.jpg
# =============================================================================
def plot_slices(image_3d):
f, loax = plt.subplots(1,5,figsize=(15,5))
loax = loax.flatten()
for ii,i in enumerate([8,9,10,11,12]):
loax[ii].imshow(image_3d[:,:,i],vmin=image_3d.min(),vmax=image_3d.max())
plt.show()
plot_slices(image3D)
# =============================================================================
# interpolate the image
# =============================================================================
interpolation_function = RegularGridInterpolator((x, y, z), image3D, method = 'linear')
# =============================================================================
# evaluate at new grid
# =============================================================================
# create the new grid that you want
x_new = np.linspace(-1,1,30)
y_new = np.linspace(-1,1,40)
z_new = np.linspace(-1,1,N)
xx_new, yy_new, zz_new = np.meshgrid(x_new,y_new,z_new,indexing ='ij')
# change the order of the points to match the input shape of the interpolation
# function. That's a bit messy but i couldn't figure out a way around that
evaluation_points = np.rollaxis(np.array([xx_new,yy_new,zz_new]),0,4)
interpolated = interpolation_function(evaluation_points)
plot_slices(interpolated)
The original (20,20,20) dimensional 3D Image:
And the upsampeled (30,40,20) dimensional 3D Image:
I have an issue with Keras, when extracting image features.
I already add 4d layer
with this code
# Add a fourth dimension (since Keras expects a list of images)
image_array = np.expand_dims(image_array, axis=0)
But still gives me an error.
This is my actual code:
from pathlib import Path
import numpy as np
import joblib
from keras.preprocessing import image
from keras.applications import vgg16
import os.path
# Path to folders with training data
img_db = Path("database") / "train"
images = []
labels = []
# Load all the not-dog images
for file in img_db.glob("*/*.jpg"):
file = str(file)
# split path with filename
pathname, filename = os.path.split(file)
person = pathname.split("\\")[-1]
print("Processing file: {}".format(file))
# Load the image from disk
img = image.load_img(file)
# Convert the image to a numpy array
image_array = image.img_to_array(img)
# Add a fourth dimension (since Keras expects a list of images)
# image_array = np.expand_dims(image_array, axis=0)
# Add the image to the list of images
images.append(image_array)
# For each 'not dog' image, the expected value should be 0
labels.append(person)
# Create a single numpy array with all the images we loaded
x_train = np.array(images)
# Also convert the labels to a numpy array
y_train = np.array(labels)
# Normalize image data to 0-to-1 range
x_train = vgg16.preprocess_input(x_train)
input_shape = (250, 250, 3)
# Load a pre-trained neural network to use as a feature extractor
pretrained_nn = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=input_shape)
# Extract features for each image (all in one pass)
features_x = pretrained_nn.predict(x_train)
# Save the array of extracted features to a file
joblib.dump(features_x, "x_train.dat")
# Save the matching array of expected values to a file
joblib.dump(y_train, "y_train.dat")
Error
Traceback (most recent call last):
File
"C:/Users/w024029h/PycharmProjects/keras_pretrained/pretrained_vgg16.py",
line 57, in
features_x = pretrained_nn.predict(x_train) File "C:\Users\w024029h\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\engine\training.py",
line 1817, in predict
check_batch_axis=False) File "C:\Users\w024029h\AppData\Local\Programs\Python\Python36\lib\site-packages\keras\engine\training.py",
line 113, in _standardize_input_data
'with shape ' + str(data_shape)) ValueError: Error when checking : expected input_1 to have 4 dimensions, but got array with shape (1,
46)
After adding an extra dimension, image_array will have a shape similar to (1, 3, 250, 250) or (1, 250, 250, 3) (depending on your backend, considering 3-channel images).
When you do images.append(image_array), it will append this 4d-array into a list of numpy arrays. In practice, this list will be a 5d array, but when you convert the list back to a numpy array, numpy does not have a way to know what is the desired shape/number of dimensions you want.
You can use np.vstack() (doc) to stack each individual 4d-array in the first axis.
Change these lines in your code:
# Create a single numpy array with all the images we loaded
x_train = np.array(images)
For:
x_train = np.vstack(images)
My training images are downscaled versions of their associated HR image. Thus, the input and the output images aren't the same dimension. For now, I'm using a hand-crafted sample of 13 images, but eventually I would like to be able to use my 500-ish HR (high-resolution) images dataset. This dataset, however, does not have images of the same dimension, so I'm guessing I'll have to crop them in order to obtain a uniform dimension.
I currently have this code set up: it takes a bunch of 512x512x3 images and applies a few transformations to augment the data (flips). I thus obtain a basic set of 39 images in their HR form, and then I downscale them by a factor of 4, thus obtaining my trainset which consits of 39 images of dimension 128x128x3.
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.image as mpimg
import skimage
from skimage import transform
from constants import data_path
from constants import img_width
from constants import img_height
from model import setUpModel
def setUpImages():
train = []
finalTest = []
sample_amnt = 11
max_amnt = 13
# Extracting images (512x512)
for i in range(sample_amnt):
train.append(mpimg.imread(data_path + str(i) + '.jpg'))
for i in range(max_amnt-sample_amnt):
finalTest.append(mpimg.imread(data_path + str(i+sample_amnt) + '.jpg'))
# # TODO: https://keras.io/preprocessing/image/
# ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False,
# samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0,
# width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0,
# zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
# vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None,
# validation_split=0.0, dtype=None)
# Augmenting data
trainData = dataAugmentation(train)
testData = dataAugmentation(finalTest)
setUpData(trainData, testData)
def setUpData(trainData, testData):
# print(type(trainData)) # <class 'numpy.ndarray'>
# print(len(trainData)) # 64
# print(type(trainData[0])) # <class 'numpy.ndarray'>
# print(trainData[0].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2-1].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2].shape) # (350, 350, 3)
# print(trainData[len(trainData)-1].shape) # (350, 350, 3)
# TODO: substract mean of all images to all images
# Separating the training data
Y_train = trainData[:len(trainData)//2] # First half is the unaltered data
X_train = trainData[len(trainData)//2:] # Second half is the deteriorated data
# Separating the testing data
Y_test = testData[:len(testData)//2] # First half is the unaltered data
X_test = testData[len(testData)//2:] # Second half is the deteriorated data
# Adjusting shapes for Keras input # TODO: make into a function ?
X_train = np.array([x for x in X_train])
Y_train = np.array([x for x in Y_train])
Y_test = np.array([x for x in Y_test])
X_test = np.array([x for x in X_test])
# # Sanity check: display four images (2x HR/LR)
# plt.figure(figsize=(10, 10))
# for i in range(2):
# plt.subplot(2, 2, i + 1)
# plt.imshow(Y_train[i], cmap=plt.cm.binary)
# for i in range(2):
# plt.subplot(2, 2, i + 1 + 2)
# plt.imshow(X_train[i], cmap=plt.cm.binary)
# plt.show()
setUpModel(X_train, Y_train, X_test, Y_test)
# TODO: possibly remove once Keras Preprocessing is integrated?
def dataAugmentation(dataToAugment):
print("Starting to augment data")
arrayToFill = []
# faster computation with values between 0 and 1 ?
dataToAugment = np.divide(dataToAugment, 255.)
# TODO: switch from RGB channels to CbCrY
# # TODO: Try GrayScale
# trainingData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(350, 350, 1) for x in trainingData])
# validateData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(1400, 1400, 1) for x in validateData])
# adding the normal images (8)
for i in range(len(dataToAugment)):
arrayToFill.append(dataToAugment[i])
# vertical axis flip (-> 16)
for i in range(len(arrayToFill)):
arrayToFill.append(np.fliplr(arrayToFill[i]))
# horizontal axis flip (-> 32)
for i in range(len(arrayToFill)):
arrayToFill.append(np.flipud(arrayToFill[i]))
# downsizing by scale of 4 (-> 64 images of 128x128x3)
for i in range(len(arrayToFill)):
arrayToFill.append(skimage.transform.resize(
arrayToFill[i],
(img_width/4, img_height/4),
mode='reflect',
anti_aliasing=True))
# # Sanity check: display the images
# plt.figure(figsize=(10, 10))
# for i in range(64):
# plt.subplot(8, 8, i + 1)
# plt.imshow(arrayToFill[i], cmap=plt.cm.binary)
# plt.show()
return np.array(arrayToFill)
My question is: in my case, can I use the Preprocessing tool that Keras offers? I would ideally like to be able to input my varying sized images of high quality, crop them (not downsize them) to 512x512x3, and data augment them through flips and whatnot. Substracting the mean would also be part of what I'd like to achieve. That set would represent my validation set.
Reusing the validation set, I want to downscale by a factor of 4 all the images, and that would generate my training set.
Those two sets could then be split appropriately to obtain, ultimately, the famous X_train Y_train X_test Y_test.
I'm just hesitant about throwing out all the work I've done so far to preprocess my mini sample, but I'm thinking if it can all be done with a single built-in function, maybe I should give that a go.
This is my first ML project, hence me not understanding very well Keras, and the documentation isn't always the clearest. I'm thinking that the fact that I'm working with a X and Y that are different in size, maybe this function doesn't apply to my project.
Thank you! :)
Yes you can use keras preprocessing function. Below some snippets to help you...
def cropping_function(x):
...
return cropped_image
X_image_gen = ImageDataGenerator(preprocessing_function = cropping_function,
horizontal_flip = True,
vertical_flip=True)
X_train_flow = X_image_gen.flow(X_train, batch_size = 16, seed = 1)
Y_image_gen = ImageDataGenerator(horizontal_flip = True,
vertical_flip=True)
Y_train_flow = Y_image_gen.flow(y_train, batch_size = 16, seed = 1)
train_flow = zip(X_train_flow,Y_train_flow)
model.fit_generator(train_flow)
Christof Henkel's suggestion is very clean and nice. I would just like to offer another way to do it using imgaug, a convenient way to augment images in lots of different ways. It's usefull if you want more implemented augmentations or if you ever need to use some ML library other than Keras.
It unfortunatly doesn't have a way to make crops that way but it allows implementing custom functions. Here is an example function for generating random crops of a set size from an image that's at least as big as the chosen crop size:
from imgaug import augmenters as iaa
def random_crop(images, random_state, parents, hooks):
crop_h, crop_w = 128, 128
new_images = []
for img in images:
if (img.shape[0] >= crop_h) and (img.shape[1] >= crop_w):
rand_h = np.random.randint(0, img.shape[0]-crop_h)
rand_w = np.random.randint(0, img.shape[1]-crop_w)
new_images.append(img[rand_h:rand_h+crop_h, rand_w:rand_w+crop_w])
else:
new_images.append(np.zeros((crop_h, crop_w, 3)))
return np.array(new_images)
def keypoints_dummy(keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
cropper = iaa.Lambda(func_images=random_crop, func_keypoints=keypoints_dummy)
You can then combine this function with any other builtin imgaug function, for example the flip functions that you're already using like this:
seq = iaa.Sequential([cropper, iaa.Fliplr(0.5), iaa.Flipud(0.5)])
This function could then generate lots of different crops from each image. An example image with some possible results (note that it would result in actual (128, 128, 3) images, they are just merged into one image here for visualization):
Your image set could then be generated by:
crops_per_image = 10
images = [skimage.io.imread(path) for path in glob.glob('train_data/*.jpg')]
augs = np.array([seq.augment_image(img)/255 for img in images for _ in range(crops_per_image)])
It would also be simple to add new functions to be applied to the images, for example the remove mean functions you mentioned.
Here's another way performing random and center crop before resizing using native ImageDataGenerator and flow_from_directory. You can add it as preprocess_crop.py module into your project.
It first resizes image preserving aspect ratio and then performs crop. Resized image size is based on crop_fraction which is hardcoded but can be changed. See crop_fraction = 0.875 line where 0.875 appears to be the most common, e.g. 224px crop from 256px image.
Note that the implementation has been done by monkey patching keras_preprocessing.image.utils.loag_img function as I couldn't find any other way to perform crop before resizing without rewriting many other classes above.
Due to these limitations, the cropping method is enumerated into the interpolation field. Methods are delimited by : where the first part is interpolation and second is crop e.g. lanczos:random. Supported crop methods are none, center, random. When no crop method is specified, none is assumed.
How to use it
Just drop the preprocess_crop.py into your project to enable cropping. The example below shows how you can use random cropping for the training and center cropping for validation:
import preprocess_crop
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.inception_v3 import preprocess_input
#...
# Training with random crop
train_datagen = ImageDataGenerator(
rotation_range=20,
channel_shift_range=20,
horizontal_flip=True,
preprocessing_function=preprocess_input
)
train_img_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:random', # <--------- random crop
shuffle = True
)
# Validation with center crop
validate_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input
)
validate_img_generator = validate_datagen.flow_from_directory(
validate_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:center', # <--------- center crop
shuffle = False
)
Here's preprocess_crop.py file to include with your project:
import random
import keras_preprocessing.image
def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None,
interpolation='nearest'):
"""Wraps keras_preprocessing.image.utils.loag_img() and adds cropping.
Cropping method enumarated in interpolation
# Arguments
path: Path to image file.
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation and crop methods used to resample and crop the image
if the target size is different from that of the loaded image.
Methods are delimited by ":" where first part is interpolation and second is crop
e.g. "lanczos:random".
Supported interpolation methods are "nearest", "bilinear", "bicubic", "lanczos",
"box", "hamming" By default, "nearest" is used.
Supported crop methods are "none", "center", "random".
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
# Decode interpolation string. Allowed Crop methods: none, center, random
interpolation, crop = interpolation.split(":") if ":" in interpolation else (interpolation, "none")
if crop == "none":
return keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=target_size,
interpolation=interpolation)
# Load original size image using Keras
img = keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=None,
interpolation=interpolation)
# Crop fraction of total image
crop_fraction = 0.875
target_width = target_size[1]
target_height = target_size[0]
if target_size is not None:
if img.size != (target_width, target_height):
if crop not in ["center", "random"]:
raise ValueError('Invalid crop method {} specified.', crop)
if interpolation not in keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(interpolation,
", ".join(keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS.keys())))
resample = keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS[interpolation]
width, height = img.size
# Resize keeping aspect ratio
# result shold be no smaller than the targer size, include crop fraction overhead
target_size_before_crop = (target_width/crop_fraction, target_height/crop_fraction)
ratio = max(target_size_before_crop[0] / width, target_size_before_crop[1] / height)
target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio)
img = img.resize(target_size_before_crop_keep_ratio, resample=resample)
width, height = img.size
if crop == "center":
left_corner = int(round(width/2)) - int(round(target_width/2))
top_corner = int(round(height/2)) - int(round(target_height/2))
return img.crop((left_corner, top_corner, left_corner + target_width, top_corner + target_height))
elif crop == "random":
left_shift = random.randint(0, int((width - target_width)))
down_shift = random.randint(0, int((height - target_height)))
return img.crop((left_shift, down_shift, target_width + left_shift, target_height + down_shift))
return img
# Monkey patch
keras_preprocessing.image.iterator.load_img = load_and_crop_img
First time here, and was hoping that someone would be able to help with an issue I’ve been dealing with. I performed the 2D fast Fourier transform on an image data, but got an error of the line norm_fourier_img all time, I want to know how I can correctly write that line and be able to obtain the Fourier image?
from PIL import Image
from array import array
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from numpy.linalg import norm, det
#load the image data into a numpy array
img = Image.open("1-z2-ex1250-p20-ch1hv100t0001.tif")
img_data = np.asarray(img)
#perform the 2D fast Fourier transform on the image data and...
fourier = np.fft.fft2(img_data)
fourier = np.fft.fftshift(fourier)
fourier = abs(fourier)
fourier = np.log10(fourier)
#calculate the original contrast range
lowest = np.nanmin(fourier[np.isfinite(fourier)])
highest = np.nanmax(fourier[np.isfinite(fourier)])
original_range = highest - lowest
#convert the normalized data into an image
norm_fourier = (highest - lowest) / original_range * 255
norm_fourier_img = Image.fromarray(norm_fourier)
#display the original image and the Fourier image
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.imshow(img, cmap = "gray")
ax2.imshow(norm_fourier_img)
ax1.title.set_text("Original Image")
ax2.title.set_text("Fourier Image")
plt.show()
#show the normalized Fourier image
norm_fourier_img.show()
#convert the output image to 8-bit pixels (grayscale) and save it
norm_fourier_img.convert("L").save("test.bnp")
enter image description here errors information
enter image description here
this is the original image needed to be converted to Fourier image, but can't see anything come up in the Fourier side.
IndexError Traceback (most recent call last)
in ()
26 norm_fourier = (highest - lowest) / original_range * 255
27 ##convert the normalized data into an image
---> 28 norm_fourier_img = Image.fromarray(norm_fourier)
29
30 # display the original image and the Fourier image
~\Anaconda3\lib\site-packages\PIL\Image.py in fromarray(obj, mode)
2441 raise ValueError("Too many dimensions: %d > %d." % (ndim, ndmax))
2442
-> 2443 size = shape1, shape[0]
2444 if strides is not None:
2445 if hasattr(obj, 'tobytes'):
IndexError: tuple index out of range