GeometryUtil.geodesicArea() returning massive values - geometry

I'm binding a popup to my polygons containing information about the area of the polygon, using the GeometryUtil.geodesicArea function. Here it is, pasted straight from the code:
geodesicArea: function (latLngs) {
var pointsCount = latLngs.length,
area = 0.0,
d2r = Math.PI / 180,
p1, p2;
if (pointsCount > 2) {
for (var i = 0; i < pointsCount; i++) {
p1 = latLngs[i];
p2 = latLngs[(i + 1) % pointsCount];
area += ((p2.lng - p1.lng) * d2r) *
(2 + Math.sin(p1.lat * d2r) + Math.sin(p2.lat * d2r));
}
area = area * 6378137.0 * 6378137.0 / 2.0;
}
return Math.abs(area);
}
When I draw a rectangle over the approximate area of Saskatchewan, Canada, using these coordinates:
0: {lat: 49.06465160956338, lng: -110.00904901708327}
1: {lat: 59.94790491663552, lng: -110.00904901708327}
2: {lat: 59.94790491663552, lng: -101.6155500597509}
3: {lat: 49.06465160956338, lng: -101.6155500597509}
roughly 651,900 sq km, it is returning 30610232650154772. If this number is assumed to be in square meters, it is to equal to roughly 30 billion square kilometers, which is well beyond the surface area of the entire earth, unless I'm missing something about what the meaning is of the numbers being returned.
What does this geodesic area function calculate? Is there some other way/function I should be using to get the area of a polygon?
Here is the code I'm using as well as calculated values line-by-line

You forgot the brackets in
area + = (p2.lng - p1.lng * d2r) *
necessary:
area + = ((p2.lng - p1.lng) * d2r) *

Just use Heron's formula and L.GeometryUtil.length() to achieve this:
Heron's formula

Related

How can I use Google Maps Circle, Rectangle and Polygon in Node JS?

Anyone knows if I am able to user Google Maps Circle, Rectangle and Polygon classes in Node JS? In the frontend is easy with Google Maps Javascript SDK, but I can't figure out how to get a hold of this library within Node JS.
I need to be able to check if points are with bounds, something in the lines of:
const location = google.maps.LatLng(lat, lng);
const circle = new google.maps.Circle({
center: area.center,
radius: area.radius,
});
const doesContain = circle.getBounds().contains(location);
Thanks ahead!
Alright boys, after giving some thought I realized it's easier to create my own code for checking if a geometry contains a point than depend on Google Maps library to do so.
Although this does not offer and the functionality Google Maps SDK offers, it does solve the geometry problem.
For anyone else looking for other Google Maps SDK functionalities, checkout this Node.js Client for Google Maps Services. Though it does not include the geometry functions I was looking for.
Solution
Without further ado here is my code:
class Circle {
/**
* Circle constructor
* #param {array} center Center coordinate [lat, lng]
* #param {number} radius Radius of the circle in meters
*/
constructor(center, radius) {
this.name = "Circle";
this.center = center;
this.radius = radius;
}
/**
* Checks if a point is within the circle
* #param {array} point Coordinates of a point [lat,lng]
* #returns true if point is within, false otherwhise
*/
contains(point) {
const { center, radius } = this;
const distance = this.distance(center, point);
if (distance > radius) return false;
return true;
}
/**
* Calculate the distance between two points (in meters)
* #param {array} p1 [lat,lng] point 1
* #param {array} p2 p1 [lat,lng] point 2
* #returns Distance between the points in meters
*/
distance(p1, p2) {
var R = 6378.137; // Radius of earth in KM
var dLat = (p2[0] * Math.PI) / 180 - (p1[0] * Math.PI) / 180;
var dLon = (p2[1] * Math.PI) / 180 - (p1[1] * Math.PI) / 180;
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos((p1[0] * Math.PI) / 180) *
Math.cos((p2[0] * Math.PI) / 180) *
Math.sin(dLon / 2) *
Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = R * c;
return d * 1000; // meters
}
}
class Rectangle {
/**
* Rectangle constructor
* #param {arrar} sw South-west coorodinate of the rectangle [lat,lng]
* #param {array} ne North-east coordinate of the rectangle [lat, lng]
*/
constructor(sw, ne) {
this.name = "Rectangle";
this.sw = sw;
this.ne = ne;
}
/**
* Checks if a point is within the reactangle
* #param {array} point Coordinates of a point [lat,lng]
* #returns true if point is within, false otherwhise
*/
contains(point) {
const { sw, ne } = this;
const x = point[0];
const y = point[1];
if (x < sw[0] || x > ne[0] || y < sw[1] || y > ne[1]) return false;
return true;
}
}
class Polygon {
/**
* Polygon constructor
* #param {array} points Array of vertices/points of the polygon [lat,lng]
*/
constructor(points) {
this.name = "Polygon";
this.points = points;
}
/**
*
* #returns {obj} Returns the coordinate of the min/max bounds that surounds the polygon
* (south-west coordinate, north-east coordinage as in [lat,lng] format)
*/
getBounds() {
const { points } = this;
let arrX = [];
let arrY = [];
for (let i in points) {
arrX.push(points[i][0]);
arrY.push(points[i][1]);
}
return {
sw: [Math.min.apply(null, arrX), Math.min.apply(null, arrY)],
ne: [Math.max.apply(null, arrX), Math.max.apply(null, arrY)],
};
}
/**
* Checks if a point is within the polygon
* #param {array} point Coordinates of a point [lat,lng]
* #returns true if point is within, false otherwhise
*/
contains(point) {
const x = point[0];
const y = point[1];
const bounds = this.getBounds();
// Check if point P lies within the min/max boundary of our polygon
if (x < bounds.sw[0] || x > bounds.ne[0] || y < bounds.sw[1] || y > bounds.ne[1])
return false;
let intersect = 0;
const { points } = this;
// Geofencing method (aka Even–odd rule)
// See more at: https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule
// Now for each path of our polygon we'll count how many times our imaginary
// line crosses our paths, if it crosses even number of times, our point P is
// outside of our polygon, odd number our point is within our polygon
for (let i = 0; i < points.length; i++) {
// Check if pont P lies on a vertices of our polygon
if (x === points[i][0] && y === points[i][1]) return true;
let j = i !== points.length - 1 ? i + 1 : 0;
// Check if Py (y-component of our point P) is with the y-boundary of our path
if (
(points[i][1] < points[j][1] && y >= points[i][1] && y <= points[j][1]) ||
(points[i][1] > points[j][1] && y >= points[j][1] && y <= points[i][1])
) {
// Check if Px (x-componet of our point P) crosses our path
let sx =
points[i][0] +
((points[j][0] - points[i][0]) * (y - points[i][1])) /
(points[j][1] - points[i][1]);
if (sx >= x) intersect += 1;
}
}
return intersect % 2 === 0 ? false : true;
}
}
module.exports = { Circle, Rectangle, Polygon };
Explanation
The Circle and Rectangle class is pretty straight forward, it's trivial to determine if a point lies within a boundary. The Polygon class is a bit more complicated because of obvious reasons.
The method used here to determine if a point P is within a polygon is called Geofencing (aka Even–odd rule), a common method in geospacial analysis.
Step 1
First we check if the point P falls within the max/min boundaries of the polygon (image 1), if it doesn't, we return false, problem solved.
Image 1 -- Polygon boundaries, P1 is within the polygon boundaries, P2 is not.
Step 2
Then we check if the point lies on a vertices (points) of the polygon, if it does, we return true, problem solved. (Image 2)
Image 2 -- Polygon boundaries, point P is on a vertices, return true.
Step 3
This next step is the most gratifying one, by now we know the point is with the polygon boundaries (from step 1) but we don't know if it's within it or not. The way to solve this we cast an imaginary line departing from the point to any direction, if it crosses the path of polygon even number of times, the point is outside of the polygon, if it crosses an odd number of times, the point is within the polygon. Like so:
Image 3 -- An imaginary line from P1 crosses the polygon paths an odd number of times (3 times), it's within the polygon boundaries. A imaginary line from P2 crosses an even number of times (4 times), it lies outside of the polygon.
Since we can pick any direction we want to cast the imaginary line from, we'll pick along the x-axis to simplify things, like so:
Image 4 -- Casting the imaginary line from point P parallel to the x-axis t0 simplify determining how many times it intersects our polygon.
To determine how many times the imaginary line intersects our polygon, we have to check each path of the polygon at a time. To do this, we break it down into two steps (see image 5 for references):
For each segment/path of the polygon we check if our point Py (y-component of our point P) is within the the boundaries of the path in question (Y1 and Y2). If it is not, we know our point is does not intersects that specific path and we can move on to the next one. If it is within the path's y-boundaries, then we have to check if it crosses our path in the x-direction (next step).
Assuming the step before is true, to check intersection in the x-direction we have calculate the equation for the path (using line equation: y2 - y1 = m(x2 - x1)) and plug in our Py component to solve for our intersection (in my code I call this Sx). Then we check if Sx is greater than Px, if so, then our imaginary line intersects the path in the x positive direction.
It's important to note that the imaginary line starts at our point P and we only count intersections in that direction we originally picked, in this case x-axis+. This is why Sx has to be grater than or equal to Px, otherwise the test fails.
Image 5 -- We break down each path of the polygon to determine the number of intersections.
Once this path is done we move to the next one and so on. In this case the line crosses 3 times our paths, and therefore we know it's within our polygon.
This is a very clever and simple way if you think about it, it works for any shape, it's truly amazing.
Read more
https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule
Examples
Example 1 - Simple shapes
const p = new Polygon([
[-3, 3],
[-4, 1],
[-3, 0],
[-2, -1],
[0, 0],
[3, 2],
[0, 1],
[-1, 4],
]);
console.log("Contains: ", p.contains([-1, 1])); // returns true
JSFiddle 1
Example 2 - Complex shapes (overlapping areas)
This method works for more complex shapes, when the polygon coordinates creates overlappping areas and they cancel each other out.
const p = new Polygon([
[-2, 0],
[2, 0],
[2, 4],
[-2, 4],
[-2, 0],
[0, 2],
[2, 0],
[0, -2],
[-2, 0],
]);
console.log("Contains: ", p.contains([0, 1])); // returns false
JSFiddle 2
Side note
If you need to quickly plot points just to get a view of a shape/grid, this plotting tool helped a lot to get a visual of what's going on. Very often I thought my code had a bug when in fact my coordinates was skewed and code was correct.
https://www.desmos.com/calculator
I only wish it let you draw lines between points. Either way I found it helpful.

OpenSCAD: inner curved edges between 2 circles

I'm not sure what to search for or how to ask the question as I can't draw. Please bear with me.
If I have a rectangle with circular end caps. I want to remove some of the edges of the rectangle so there is a smooth path all round. Kinda like of you were to stretch the ends, the middle gets thinner.
I was trying to work out the chord of a larger, outer circle until I got stuck trying to work out where the circles should touch.
I can see some relationships for trigonometry, but my brain just won't go the extra mile.
Can anyone please help point me in the right direction.
Thanks.
Here is the answer:
// Small value for CSG
Delta = 0.01;
2Delta = 2 * Delta;
$fa=1; $fs=$fa;
module roudedArm(xl=50, yt=10, zh=5, in=2, bh=0.8) {
EndRadius = yt/2; // size of outer ends
EndSpacing = xl-yt; // distance between end point radii
ArmConcavity = in; // how much in does it go in on each side
ArmThickness = zh; // height in z
// Negative curve to narrow the Arm (calculated by pythagoras)
ArmCurveRadius = (pow((EndSpacing / 2), 2) - 2 * EndRadius * ArmConcavity + pow(ArmConcavity, 2)) / (2 * ArmConcavity);
// The orthogonal distance between the middle of the Arm the point it touches the round pillar sections
ArmSectionLength = (EndSpacing / 2) * ArmCurveRadius / (ArmCurveRadius + EndRadius);
// end points
lbxcylinder(r=EndRadius, h=ArmThickness);
translate([EndSpacing, 0, 0]) lbxcylinder(r=EndRadius, h=ArmThickness);
// inner curve
difference()
{
translate([EndSpacing / 2 - ArmSectionLength, -EndRadius -ArmThickness, 0])
translate([ArmSectionLength, (EndRadius + ArmThickness),0])
lbxcube([ArmSectionLength * 2, 2 * (EndRadius + ArmThickness), ArmThickness], bh=bh);
// Cut out Arm curve
translate([EndSpacing / 2, ArmCurveRadius + EndRadius - ArmConcavity, -Delta])
lbxcylinder(r = ArmCurveRadius, h = ArmThickness + 2Delta, bh=-bh);
translate([EndSpacing / 2, -(ArmCurveRadius + EndRadius - ArmConcavity), -Delta])
lbxcylinder(r = ArmCurveRadius, h = ArmThickness + 2Delta, bh=-bh);
}
}
module lbxcube(size, bh=0.8) {
// don't support bevelling in demo
translate([-size[0]/2, -size[1]/2, 0]) cube(size);
}
module lbxcylinder(r, h, bh=0.8) {
// don't support bevelling in demo
cylinder(r=r, h=h);
}
roudedArm(xl=50, yt=10, zh=5, in=2, bh=0.8);
Thanks to Rupert and his Curvy Door Handle on Thingiverse.

Rotating object relative to mouse position

At the moment I'm using the dot product of the mouse position and (0, 1) to generate radians to rotate an object, in three.js
Code below, works ok but the object 'jumps' because the radian angle skips from positive to negative when the clientX value goes between window.innerWidth / 2
onDocumentMouseMove : function(event) {
// rotate circle relative to current mouse pos
var oldPos = new THREE.Vector2(0, 1);
Template.Main.mouseCurrPos = new THREE.Vector2((event.clientX / window.innerWidth ) * 2 - 1, - (event.clientY / window.innerHeight) * 2 + 1);
Template.Main.mouseCurrPos.normalize();
//Template.Main.projector.unprojectVector(Template.Main.mouseCurrPos, Template.Main.scene);
var angle = oldPos.dot(Template.Main.mouseCurrPos);
Template.Main.mousePrevPos.x = event.clientX;
Template.Main.mousePrevPos.y = event.clientY;
if (event.clientX < window.innerWidth / 2) {
Template.Main.circle.rotation.z = -angle;
}
else {
Template.Main.circle.rotation.z = angle;
}
console.log(Template.Main.circle.rotation.z);
}
However if I add this to assign the value to oldPos:
if (event.clientX < window.innerWidth / 2) {
oldPos = new THREE.Vector2(0, -1);
}
else {
oldPos = new THREE.Vector2(0, 1);
}
Then the "jumping" goes but the effect of rotation is inverted when the mouse is on the left of the window.
I.e. mouse going up rotates anti-clockwise and vice-versa which is not desired.
It's frustrating.
Also if I keep the oldPos conditional assignment and leave out the conditional negation of the angle instead, the jumping comes back.
You can see a demo here: http://theworldmoves.me/rotation-demo/
Many thanks for any tips.
Why are you using the result of the dot product as the angle (radians)? The dot product gives you the cosine of the angle (times the magnitude of the vectors, but these are a unit vector and a normalized vector, so that doesn't matter).
You could change your angle computation to
var angle = Math.acos(oldPos.dot(Template.Main.mouseCurrPos));
However, you may get the wrong quadrant, since there can be two values of theta that satisfy cos(theta) = n. The usual way to get the angle of a vector (origin to mouse position) in the right quadrant is to use atan2():
var angle = Math.atan2(Template.Main.mouseCurrPos.y,
Template.Main.mouseCurrPos.x);
This should give the angle of the mouse position vector, going counterclockwise from (1, 0). A little experimentation can determine for sure where the zero angle is, and which direction is positive rotation.

How to "soften" the edges of a polyline?

Given a line made up of several points, how do I make the line smoother/ curvier/ softer through adding intermediate points -- while keeping the original points completely intact and unmoved?
To illustrate, I want to go from the above to the below in this illustration:
Note how in the above picture, if we start at the bottom there will be a sharper right turn. In the bottom image however, this sharp right turn is made a bit "softer" by adding an intermediate point which is positioned in the middle of the two points, and using averages of the angles of the other lines. (Differently put, imagine the lines a race car would drive, as it couldn't abruptly change direction.) Note how, however, none of the original points was "touched", I just added more points.
Thanks!! For what it's worth, I'm implementing this using JavaScript and Canvas.
with each edge (e1 & e2) adjacent to each 'middle' edge (me) do
let X = 0.5 x length(me)
find 2 cubic bezier control points by extending the adjacent edges by X (see algorithm below)
get midpoint of cubic bezier (by applying formula below)
insert new 'midpoint' between me's two coordinates.
FloatPoint ExtendLine(const FloatPoint A, const FloatPoint B, single distance)
{
FloatPoint newB;
float lenAB = sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
newB.X = B.x - (B.x - A.x) / lenAB * distance;
newB.Y = B.Y - (B.Y - A.Y) / lenAB * distance;
return newB;
}
Edit: Formula for Bezier Curve midpoint: p(0.5) = 0.125(p0) + 0.375(p1) + 0.375(p2) + 0.125(p3)
The following code found elsewhere here does the job for me, in the specific context of JavaScript-Canvas which I'm using -- but please see Angus' answer for a more general approach:
var max = points.length;
context.beginPath();
var i = 0;
context.moveTo(points[i].x, points[i].y);
for (i = 1; i < max - 2; i++) {
var xc = (points[i].x + points[i + 1].x) * .5;
var yc = (points[i].y + points[i + 1].y) * .5;
context.quadraticCurveTo(points[i].x, points[i].y, xc, yc);
}
context.quadraticCurveTo(points[max - 2].x, points[max - 2].y, points[max - 1].x,points[max - 1].y);
context.closePath();
context.stroke();

Circle-Rectangle collision detection (intersection)

How can I tell whether a circle and a rectangle intersect in 2D Euclidean space? (i.e. classic 2D geometry)
Here is how I would do it:
bool intersects(CircleType circle, RectType rect)
{
circleDistance.x = abs(circle.x - rect.x);
circleDistance.y = abs(circle.y - rect.y);
if (circleDistance.x > (rect.width/2 + circle.r)) { return false; }
if (circleDistance.y > (rect.height/2 + circle.r)) { return false; }
if (circleDistance.x <= (rect.width/2)) { return true; }
if (circleDistance.y <= (rect.height/2)) { return true; }
cornerDistance_sq = (circleDistance.x - rect.width/2)^2 +
(circleDistance.y - rect.height/2)^2;
return (cornerDistance_sq <= (circle.r^2));
}
Here's how it works:
The first pair of lines calculate the absolute values of the x and y difference between the center of the circle and the center of the rectangle. This collapses the four quadrants down into one, so that the calculations do not have to be done four times. The image shows the area in which the center of the circle must now lie. Note that only the single quadrant is shown. The rectangle is the grey area, and the red border outlines the critical area which is exactly one radius away from the edges of the rectangle. The center of the circle has to be within this red border for the intersection to occur.
The second pair of lines eliminate the easy cases where the circle is far enough away from the rectangle (in either direction) that no intersection is possible. This corresponds to the green area in the image.
The third pair of lines handle the easy cases where the circle is close enough to the rectangle (in either direction) that an intersection is guaranteed. This corresponds to the orange and grey sections in the image. Note that this step must be done after step 2 for the logic to make sense.
The remaining lines calculate the difficult case where the circle may intersect the corner of the rectangle. To solve, compute the distance from the center of the circle and the corner, and then verify that the distance is not more than the radius of the circle. This calculation returns false for all circles whose center is within the red shaded area and returns true for all circles whose center is within the white shaded area.
There are only two cases when the circle intersects with the rectangle:
Either the circle's centre lies inside the rectangle, or
One of the edges of the rectangle has a point in the circle.
Note that this does not require the rectangle to be axis-parallel.
(One way to see this: if none of the edges has a point in the circle (if all the edges are completely "outside" the circle), then the only way the circle can still intersect the polygon is if it lies completely inside the polygon.)
With that insight, something like the following will work, where the circle has centre P and radius R, and the rectangle has vertices A, B, C, D in that order (not complete code):
def intersect(Circle(P, R), Rectangle(A, B, C, D)):
S = Circle(P, R)
return (pointInRectangle(P, Rectangle(A, B, C, D)) or
intersectCircle(S, (A, B)) or
intersectCircle(S, (B, C)) or
intersectCircle(S, (C, D)) or
intersectCircle(S, (D, A)))
If you're writing any geometry you probably have the above functions in your library already. Otherwise, pointInRectangle() can be implemented in several ways; any of the general point in polygon methods will work, but for a rectangle you can just check whether this works:
0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD
And intersectCircle() is easy to implement too: one way would be to check if the foot of the perpendicular from P to the line is close enough and between the endpoints, and check the endpoints otherwise.
The cool thing is that the same idea works not just for rectangles but for the intersection of a circle with any simple polygon — doesn't even have to be convex!
Here is another solution that's pretty simple to implement (and pretty fast, too). It will catch all intersections, including when the sphere has fully entered the rectangle.
// clamp(value, min, max) - limits value to the range min..max
// Find the closest point to the circle within the rectangle
float closestX = clamp(circle.X, rectangle.Left, rectangle.Right);
float closestY = clamp(circle.Y, rectangle.Top, rectangle.Bottom);
// Calculate the distance between the circle's center and this closest point
float distanceX = circle.X - closestX;
float distanceY = circle.Y - closestY;
// If the distance is less than the circle's radius, an intersection occurs
float distanceSquared = (distanceX * distanceX) + (distanceY * distanceY);
return distanceSquared < (circle.Radius * circle.Radius);
With any decent math library, that can be shortened to 3 or 4 lines.
The simplest solution I've come up with is pretty straightforward.
It works by finding the point in the rectangle closest to the circle, then comparing the distance.
You can do all of this with a few operations, and even avoid the sqrt function.
public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
float closestX = (cx < left ? left : (cx > right ? right : cx));
float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
float dx = closestX - cx;
float dy = closestY - cy;
return ( dx * dx + dy * dy ) <= radius * radius;
}
And that's it! The above solution assumes an origin in the upper left of the world with the x-axis pointing down.
If you want a solution to handling collisions between a moving circle and rectangle, it's far more complicated and covered in another answer of mine.
your sphere and rect intersect IIF
the distance between the circle-center and one vertex of your rect is smaller than the radius of your sphere
OR
the distance between the circle-center and one edge of your rect is smaller than the radius of your sphere ([point-line distance ])
OR
the circle center is inside the rect
point-point distance:
P1 = [x1,y1]
P2 = [x2,y2]
Distance = sqrt(abs(x1 - x2)+abs(y1-y2))
point-line distance:
L1 = [x1,y1],L2 = [x2,y2] (two points of your line, ie the vertex points)
P1 = [px,py] some point
Distance d = abs( (x2-x1)(y1-py)-(x1-px)(y2-y1) ) / Distance(L1,L2)
circle center inside rect:
take an seperating axis aproach: if there exists a projection onto a line that seperates the rectangle from the point, they do not intersect
you project the point on lines parallel to the sides of your rect and can then easily determine if they intersect. if they intersect not on all 4 projections, they (the point and the rectangle) can not intersect.
you just need the inner-product ( x= [x1,x2] , y = [y1,y2] , x*y = x1*y1 + x2*y2 )
your test would look like that:
//rectangle edges: TL (top left), TR (top right), BL (bottom left), BR (bottom right)
//point to test: POI
seperated = false
for egde in { {TL,TR}, {BL,BR}, {TL,BL},{TR-BR} }: // the edges
D = edge[0] - edge[1]
innerProd = D * POI
Interval_min = min(D*edge[0],D*edge[1])
Interval_max = max(D*edge[0],D*edge[1])
if not ( Interval_min ≤ innerProd ≤ Interval_max )
seperated = true
break // end for loop
end if
end for
if (seperated is true)
return "no intersection"
else
return "intersection"
end if
this does not assume an axis-aligned rectangle and is easily extendable for testing intersections between convex sets.
This is the fastest solution:
public static boolean intersect(Rectangle r, Circle c)
{
float cx = Math.abs(c.x - r.x - r.halfWidth);
float xDist = r.halfWidth + c.radius;
if (cx > xDist)
return false;
float cy = Math.abs(c.y - r.y - r.halfHeight);
float yDist = r.halfHeight + c.radius;
if (cy > yDist)
return false;
if (cx <= r.halfWidth || cy <= r.halfHeight)
return true;
float xCornerDist = cx - r.halfWidth;
float yCornerDist = cy - r.halfHeight;
float xCornerDistSq = xCornerDist * xCornerDist;
float yCornerDistSq = yCornerDist * yCornerDist;
float maxCornerDistSq = c.radius * c.radius;
return xCornerDistSq + yCornerDistSq <= maxCornerDistSq;
}
Note the order of execution, and half the width/height is pre-computed. Also the squaring is done "manually" to save some clock cycles.
Actually, this is much more simple. You need only two things.
First, you need to find four orthogonal distances from the circle centre to each line of the rectangle. Then your circle will not intersect the rectangle if any three of them are larger than the circle radius.
Second, you need to find the distance between the circle centre and the rectangle centre, then you circle will not be inside of the rectangle if the distance is larger than a half of the rectangle diagonal length.
Good luck!
Here's my C code for resolving a collision between a sphere and a non-axis aligned box. It relies on a couple of my own library routines, but it may prove useful to some. I'm using it in a game and it works perfectly.
float physicsProcessCollisionBetweenSelfAndActorRect(SPhysics *self, SPhysics *actor)
{
float diff = 99999;
SVector relative_position_of_circle = getDifference2DBetweenVectors(&self->worldPosition, &actor->worldPosition);
rotateVector2DBy(&relative_position_of_circle, -actor->axis.angleZ); // This aligns the coord system so the rect becomes an AABB
float x_clamped_within_rectangle = relative_position_of_circle.x;
float y_clamped_within_rectangle = relative_position_of_circle.y;
LIMIT(x_clamped_within_rectangle, actor->physicsRect.l, actor->physicsRect.r);
LIMIT(y_clamped_within_rectangle, actor->physicsRect.b, actor->physicsRect.t);
// Calculate the distance between the circle's center and this closest point
float distance_to_nearest_edge_x = relative_position_of_circle.x - x_clamped_within_rectangle;
float distance_to_nearest_edge_y = relative_position_of_circle.y - y_clamped_within_rectangle;
// If the distance is less than the circle's radius, an intersection occurs
float distance_sq_x = SQUARE(distance_to_nearest_edge_x);
float distance_sq_y = SQUARE(distance_to_nearest_edge_y);
float radius_sq = SQUARE(self->physicsRadius);
if(distance_sq_x + distance_sq_y < radius_sq)
{
float half_rect_w = (actor->physicsRect.r - actor->physicsRect.l) * 0.5f;
float half_rect_h = (actor->physicsRect.t - actor->physicsRect.b) * 0.5f;
CREATE_VECTOR(push_vector);
// If we're at one of the corners of this object, treat this as a circular/circular collision
if(fabs(relative_position_of_circle.x) > half_rect_w && fabs(relative_position_of_circle.y) > half_rect_h)
{
SVector edges;
if(relative_position_of_circle.x > 0) edges.x = half_rect_w; else edges.x = -half_rect_w;
if(relative_position_of_circle.y > 0) edges.y = half_rect_h; else edges.y = -half_rect_h;
push_vector = relative_position_of_circle;
moveVectorByInverseVector2D(&push_vector, &edges);
// We now have the vector from the corner of the rect to the point.
float delta_length = getVector2DMagnitude(&push_vector);
float diff = self->physicsRadius - delta_length; // Find out how far away we are from our ideal distance
// Normalise the vector
push_vector.x /= delta_length;
push_vector.y /= delta_length;
scaleVector2DBy(&push_vector, diff); // Now multiply it by the difference
push_vector.z = 0;
}
else // Nope - just bouncing against one of the edges
{
if(relative_position_of_circle.x > 0) // Ball is to the right
push_vector.x = (half_rect_w + self->physicsRadius) - relative_position_of_circle.x;
else
push_vector.x = -((half_rect_w + self->physicsRadius) + relative_position_of_circle.x);
if(relative_position_of_circle.y > 0) // Ball is above
push_vector.y = (half_rect_h + self->physicsRadius) - relative_position_of_circle.y;
else
push_vector.y = -((half_rect_h + self->physicsRadius) + relative_position_of_circle.y);
if(fabs(push_vector.x) < fabs(push_vector.y))
push_vector.y = 0;
else
push_vector.x = 0;
}
diff = 0; // Cheat, since we don't do anything with the value anyway
rotateVector2DBy(&push_vector, actor->axis.angleZ);
SVector *from = &self->worldPosition;
moveVectorBy2D(from, push_vector.x, push_vector.y);
}
return diff;
}
If you are interested in a more graphical solution which even works on (in plane) rotated rectangles..
Demo: https://jsfiddle.net/exodus4d/94mxLvqh/2691/
The idea is:
Translate the scenary to the origin [0,0]
In case the rect is not in plane, the rotation center should be at
[0, 0]
Rotate the scenary back into plane
Calculate intersection
const hasIntersection = ({x: cx, y: cy, r: cr}, {x, y, width, height}) => {
const distX = Math.abs(cx - x - width / 2);
const distY = Math.abs(cy - y - height / 2);
if (distX > (width / 2 + cr)) {
return false;
}
if (distY > (height / 2 + cr)) {
return false;
}
if (distX <= (width / 2)) {
return true;
}
if (distY <= (height / 2)) {
return true;
}
const Δx = distX - width / 2;
const Δy = distY - height / 2;
return Δx * Δx + Δy * Δy <= cr * cr;
};
const rect = new DOMRect(50, 20, 100, 50);
const circ1 = new DOMPoint(160, 80);
circ1.r = 20;
const circ2 = new DOMPoint(80, 95);
circ2.r = 20;
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
ctx.strokeRect(rect.x, rect.y, rect.width, rect.height);
ctx.beginPath();
ctx.strokeStyle = hasIntersection(circ1, rect) ? 'red' : 'green';
ctx.arc(circ1.x, circ1.y, circ1.r, 0, 2 * Math.PI);
ctx.stroke();
ctx.beginPath();
ctx.strokeStyle = hasIntersection(circ2, rect) ? 'red' : 'green';
ctx.arc(circ2.x, circ2.y, circ2.r, 0, 2 * Math.PI);
ctx.stroke();
<canvas id="canvas"></canvas>
Tip: Instead of rotating the rect (4 points). You can rotate the circle (1 point) in opposite direction.
To visualise, take your keyboard's numpad. If the key '5' represents your rectangle, then all the keys 1-9 represent the 9 quadrants of space divided by the lines that make up your rectangle (with 5 being the inside.)
1) If the circle's center is in quadrant 5 (i.e. inside the rectangle) then the two shapes intersect.
With that out of the way, there are two possible cases:
a) The circle intersects with two or more neighboring edges of the rectangle.
b) The circle intersects with one edge of the rectangle.
The first case is simple. If the circle intersects with two neighboring edges of the rectangle, it must contain the corner connecting those two edges. (That, or its center lies in quadrant 5, which we have already covered. Also note that the case where the circle intersects with only two opposing edges of the rectangle is covered as well.)
2) If any of the corners A, B, C, D of the rectangle lie inside the circle, then the two shapes intersect.
The second case is trickier. We should make note of that it may only happen when the circle's center lies in one of the quadrants 2, 4, 6 or 8. (In fact, if the center is on any of the quadrants 1, 3, 7, 8, the corresponding corner will be the closest point to it.)
Now we have the case that the circle's center is in one of the 'edge' quadrants, and it only intersects with the corresponding edge. Then, the point on the edge that is closest to the circle's center, must lie inside the circle.
3) For each line AB, BC, CD, DA, construct perpendicular lines p(AB,P), p(BC,P), p(CD,P), p(DA,P) through the circle's center P. For each perpendicular line, if the intersection with the original edge lies inside the circle, then the two shapes intersect.
There is a shortcut for this last step. If the circle's center is in quadrant 8 and the edge AB is the top edge, the point of intersection will have the y-coordinate of A and B, and the x-coordinate of center P.
You can construct the four line intersections and check if they lie on their corresponding edges, or find out which quadrant P is in and check the corresponding intersection. Both should simplify to the same boolean equation. Be wary of that the step 2 above did not rule out P being in one of the 'corner' quadrants; it just looked for an intersection.
Edit: As it turns out, I have overlooked the simple fact that #2 is a subcase of #3 above. After all, corners too are points on the edges. See #ShreevatsaR's answer below for a great explanation. And in the meanwhile, forget #2 above unless you want a quick but redundant check.
This function detect collisions (intersections) between Circle and Rectangle. He works like e.James method in his answer, but this one detect collisions for all angles of rectangle (not only right up corner).
NOTE:
aRect.origin.x and aRect.origin.y are coordinates of bottom left angle of rectangle!
aCircle.x and aCircle.y are coordinates of Circle Center!
static inline BOOL RectIntersectsCircle(CGRect aRect, Circle aCircle) {
float testX = aCircle.x;
float testY = aCircle.y;
if (testX < aRect.origin.x)
testX = aRect.origin.x;
if (testX > (aRect.origin.x + aRect.size.width))
testX = (aRect.origin.x + aRect.size.width);
if (testY < aRect.origin.y)
testY = aRect.origin.y;
if (testY > (aRect.origin.y + aRect.size.height))
testY = (aRect.origin.y + aRect.size.height);
return ((aCircle.x - testX) * (aCircle.x - testX) + (aCircle.y - testY) * (aCircle.y - testY)) < aCircle.radius * aCircle.radius;
}
Improving a little bit the answer of e.James:
double dx = abs(circle.x - rect.x) - rect.w / 2,
dy = abs(circle.y - rect.y) - rect.h / 2;
if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }
return (dx * dx + dy * dy <= circle.r * circle.r);
This subtracts rect.w / 2 and rect.h / 2 once instead of up to three times.
I've a method which avoids the expensive pythagoras if not necessary - ie. when bounding boxes of the rectangle and the circle do not intersect.
And it'll work for non-euclidean too:
class Circle {
// create the bounding box of the circle only once
BBox bbox;
public boolean intersect(BBox b) {
// test top intersect
if (lat > b.maxLat) {
if (lon < b.minLon)
return normDist(b.maxLat, b.minLon) <= normedDist;
if (lon > b.maxLon)
return normDist(b.maxLat, b.maxLon) <= normedDist;
return b.maxLat - bbox.minLat > 0;
}
// test bottom intersect
if (lat < b.minLat) {
if (lon < b.minLon)
return normDist(b.minLat, b.minLon) <= normedDist;
if (lon > b.maxLon)
return normDist(b.minLat, b.maxLon) <= normedDist;
return bbox.maxLat - b.minLat > 0;
}
// test middle intersect
if (lon < b.minLon)
return bbox.maxLon - b.minLon > 0;
if (lon > b.maxLon)
return b.maxLon - bbox.minLon > 0;
return true;
}
}
minLat,maxLat can be replaced with minY,maxY and the same for minLon, maxLon: replace it with minX, maxX
normDist ist just a bit faster method then the full distance calculation. E.g. without the square-root in euclidean space (or without a lot of other stuff for haversine): dLat=(lat-circleY); dLon=(lon-circleX); normed=dLat*dLat+dLon*dLon. Of course if you use that normDist method you'll need to do create a normedDist = dist*dist; for the circle
See the full BBox and Circle code of my GraphHopper project.
I created class for work with shapes
hope you enjoy
public class Geomethry {
public static boolean intersectionCircleAndRectangle(int circleX, int circleY, int circleR, int rectangleX, int rectangleY, int rectangleWidth, int rectangleHeight){
boolean result = false;
float rectHalfWidth = rectangleWidth/2.0f;
float rectHalfHeight = rectangleHeight/2.0f;
float rectCenterX = rectangleX + rectHalfWidth;
float rectCenterY = rectangleY + rectHalfHeight;
float deltax = Math.abs(rectCenterX - circleX);
float deltay = Math.abs(rectCenterY - circleY);
float lengthHypotenuseSqure = deltax*deltax + deltay*deltay;
do{
// check that distance between the centerse is more than the distance between the circumcircle of rectangle and circle
if(lengthHypotenuseSqure > ((rectHalfWidth+circleR)*(rectHalfWidth+circleR) + (rectHalfHeight+circleR)*(rectHalfHeight+circleR))){
//System.out.println("distance between the centerse is more than the distance between the circumcircle of rectangle and circle");
break;
}
// check that distance between the centerse is less than the distance between the inscribed circle
float rectMinHalfSide = Math.min(rectHalfWidth, rectHalfHeight);
if(lengthHypotenuseSqure < ((rectMinHalfSide+circleR)*(rectMinHalfSide+circleR))){
//System.out.println("distance between the centerse is less than the distance between the inscribed circle");
result=true;
break;
}
// check that the squares relate to angles
if((deltax > (rectHalfWidth+circleR)*0.9) && (deltay > (rectHalfHeight+circleR)*0.9)){
//System.out.println("squares relate to angles");
result=true;
}
}while(false);
return result;
}
public static boolean intersectionRectangleAndRectangle(int rectangleX, int rectangleY, int rectangleWidth, int rectangleHeight, int rectangleX2, int rectangleY2, int rectangleWidth2, int rectangleHeight2){
boolean result = false;
float rectHalfWidth = rectangleWidth/2.0f;
float rectHalfHeight = rectangleHeight/2.0f;
float rectHalfWidth2 = rectangleWidth2/2.0f;
float rectHalfHeight2 = rectangleHeight2/2.0f;
float deltax = Math.abs((rectangleX + rectHalfWidth) - (rectangleX2 + rectHalfWidth2));
float deltay = Math.abs((rectangleY + rectHalfHeight) - (rectangleY2 + rectHalfHeight2));
float lengthHypotenuseSqure = deltax*deltax + deltay*deltay;
do{
// check that distance between the centerse is more than the distance between the circumcircle
if(lengthHypotenuseSqure > ((rectHalfWidth+rectHalfWidth2)*(rectHalfWidth+rectHalfWidth2) + (rectHalfHeight+rectHalfHeight2)*(rectHalfHeight+rectHalfHeight2))){
//System.out.println("distance between the centerse is more than the distance between the circumcircle");
break;
}
// check that distance between the centerse is less than the distance between the inscribed circle
float rectMinHalfSide = Math.min(rectHalfWidth, rectHalfHeight);
float rectMinHalfSide2 = Math.min(rectHalfWidth2, rectHalfHeight2);
if(lengthHypotenuseSqure < ((rectMinHalfSide+rectMinHalfSide2)*(rectMinHalfSide+rectMinHalfSide2))){
//System.out.println("distance between the centerse is less than the distance between the inscribed circle");
result=true;
break;
}
// check that the squares relate to angles
if((deltax > (rectHalfWidth+rectHalfWidth2)*0.9) && (deltay > (rectHalfHeight+rectHalfHeight2)*0.9)){
//System.out.println("squares relate to angles");
result=true;
}
}while(false);
return result;
}
}
Here is the modfied code 100% working:
public static bool IsIntersected(PointF circle, float radius, RectangleF rectangle)
{
var rectangleCenter = new PointF((rectangle.X + rectangle.Width / 2),
(rectangle.Y + rectangle.Height / 2));
var w = rectangle.Width / 2;
var h = rectangle.Height / 2;
var dx = Math.Abs(circle.X - rectangleCenter.X);
var dy = Math.Abs(circle.Y - rectangleCenter.Y);
if (dx > (radius + w) || dy > (radius + h)) return false;
var circleDistance = new PointF
{
X = Math.Abs(circle.X - rectangle.X - w),
Y = Math.Abs(circle.Y - rectangle.Y - h)
};
if (circleDistance.X <= (w))
{
return true;
}
if (circleDistance.Y <= (h))
{
return true;
}
var cornerDistanceSq = Math.Pow(circleDistance.X - w, 2) +
Math.Pow(circleDistance.Y - h, 2);
return (cornerDistanceSq <= (Math.Pow(radius, 2)));
}
Bassam Alugili
Here's a fast one-line test for this:
if (length(max(abs(center - rect_mid) - rect_halves, 0)) <= radius ) {
// They intersect.
}
This is the axis-aligned case where rect_halves is a positive vector pointing from the rectangle middle to a corner. The expression inside length() is a delta vector from center to a closest point in the rectangle. This works in any dimension.
First check if the rectangle and the square tangent to the circle overlaps (easy). If they do not overlaps, they do not collide.
Check if the circle's center is inside the rectangle (easy). If it's inside, they collide.
Calculate the minimum squared distance from the rectangle sides to the circle's center (little hard). If it's lower that the squared radius, then they collide, else they don't.
It's efficient, because:
First it checks the most common scenario with a cheap algorithm and when it's sure they do not collide, it ends.
Then it checks the next most common scenario with a cheap algorithm (do not calculate square root, use the squared values) and when it's sure they collide it ends.
Then it executes the more expensive algorithm to check collision with the rectangle borders.
worked for me (only work when angle of rectangle is 180)
function intersects(circle, rect) {
let left = rect.x + rect.width > circle.x - circle.radius;
let right = rect.x < circle.x + circle.radius;
let top = rect.y < circle.y + circle.radius;
let bottom = rect.y + rect.height > circle.y - circle.radius;
return left && right && bottom && top;
}
For those have to calculate Circle/Rectangle collision in Geographic Coordinates with SQL,
this is my implementation in oracle 11 of e.James suggested algorithm.
In input it requires circle coordinates, circle radius in km and two vertices coordinates of the rectangle:
CREATE OR REPLACE FUNCTION "DETECT_CIRC_RECT_COLLISION"
(
circleCenterLat IN NUMBER, -- circle Center Latitude
circleCenterLon IN NUMBER, -- circle Center Longitude
circleRadius IN NUMBER, -- circle Radius in KM
rectSWLat IN NUMBER, -- rectangle South West Latitude
rectSWLon IN NUMBER, -- rectangle South West Longitude
rectNELat IN NUMBER, -- rectangle North Est Latitude
rectNELon IN NUMBER -- rectangle North Est Longitude
)
RETURN NUMBER
AS
-- converts km to degrees (use 69 if miles)
kmToDegreeConst NUMBER := 111.045;
-- Remaining rectangle vertices
rectNWLat NUMBER;
rectNWLon NUMBER;
rectSELat NUMBER;
rectSELon NUMBER;
rectHeight NUMBER;
rectWIdth NUMBER;
circleDistanceLat NUMBER;
circleDistanceLon NUMBER;
cornerDistanceSQ NUMBER;
BEGIN
-- Initialization of remaining rectangle vertices
rectNWLat := rectNELat;
rectNWLon := rectSWLon;
rectSELat := rectSWLat;
rectSELon := rectNELon;
-- Rectangle sides length calculation
rectHeight := calc_distance(rectSWLat, rectSWLon, rectNWLat, rectNWLon);
rectWidth := calc_distance(rectSWLat, rectSWLon, rectSELat, rectSELon);
circleDistanceLat := abs( (circleCenterLat * kmToDegreeConst) - ((rectSWLat * kmToDegreeConst) + (rectHeight/2)) );
circleDistanceLon := abs( (circleCenterLon * kmToDegreeConst) - ((rectSWLon * kmToDegreeConst) + (rectWidth/2)) );
IF circleDistanceLon > ((rectWidth/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat > ((rectHeight/2) + circleRadius) THEN
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLon <= (rectWidth/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
IF circleDistanceLat <= (rectHeight/2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
cornerDistanceSQ := POWER(circleDistanceLon - (rectWidth/2), 2) + POWER(circleDistanceLat - (rectHeight/2), 2);
IF cornerDistanceSQ <= POWER(circleRadius, 2) THEN
RETURN 0; -- -1 => NO Collision ; 0 => Collision Detected
ELSE
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END IF;
RETURN -1; -- -1 => NO Collision ; 0 => Collision Detected
END;
Works, just figured this out a week ago, and just now got to testing it.
double theta = Math.atan2(cir.getX()-sqr.getX()*1.0,
cir.getY()-sqr.getY()*1.0); //radians of the angle
double dBox; //distance from box to edge of box in direction of the circle
if((theta > Math.PI/4 && theta < 3*Math.PI / 4) ||
(theta < -Math.PI/4 && theta > -3*Math.PI / 4)) {
dBox = sqr.getS() / (2*Math.sin(theta));
} else {
dBox = sqr.getS() / (2*Math.cos(theta));
}
boolean touching = (Math.abs(dBox) >=
Math.sqrt(Math.pow(sqr.getX()-cir.getX(), 2) +
Math.pow(sqr.getY()-cir.getY(), 2)));
def colision(rect, circle):
dx = rect.x - circle.x
dy = rect.y - circle.y
distance = (dy**2 + dx**2)**0.5
angle_to = (rect.angle + math.atan2(dx, dy)/3.1415*180.0) % 360
if((angle_to>135 and angle_to<225) or (angle_to>0 and angle_to<45) or (angle_to>315 and angle_to<360)):
if distance <= circle.rad/2.+((rect.height/2.0)*(1.+0.5*abs(math.sin(angle_to*math.pi/180.)))):
return True
else:
if distance <= circle.rad/2.+((rect.width/2.0)*(1.+0.5*abs(math.cos(angle_to*math.pi/180.)))):
return True
return False
I developed this algorithm while making this game: https://mshwf.github.io/mates/
If the circle touches the square, then the distance between the centerline of the circle and the centerline of the square should equal (diameter+side)/2.
So, let's have a variable named touching that holds that distance. The problem was: which centerline should I consider: the horizontal or the vertical?
Consider this frame:
Each centerline gives different distances, and only one is a correct indication to a no-collision, but using our human intuition is a start to understand how the natural algorithm works.
They are not touching, which means that the distance between the two centerlines should be greater than touching, which means that the natural algorithm picks the horizontal centerlines (the vertical centerlines says there's a collision!). By noticing multiple circles, you can tell: if the circle intersects with the vertical extension of the square, then we pick the vertical distance (between the horizontal centerlines), and if the circle intersects with the horizontal extension, we pick the horizontal distance:
Another example, circle number 4: it intersects with the horizontal extension of the square, then we consider the horizontal distance which is equal to touching.
Ok, the tough part is demystified, now we know how the algorithm will work, but how we know with which extension the circle intersects?
It's easy actually: we calculate the distance between the most right x and the most left x (of both the circle and the square), and the same for the y-axis, the one with greater value is the axis with the extension that intersects with the circle (if it's greater than diameter+side then the circle is outside the two square extensions, like circle #7). The code looks like:
right = Math.max(square.x+square.side, circle.x+circle.rad);
left = Math.min(square.x, circle.x-circle.rad);
bottom = Math.max(square.y+square.side, circle.y+circle.rad);
top = Math.min(square.y, circle.y-circle.rad);
if (right - left > down - top) {
//compare with horizontal distance
}
else {
//compare with vertical distance
}
/*These equations assume that the reference point of the square is at its top left corner, and the reference point of the circle is at its center*/
do a pre-check whether a circle fully encapsulating the rectangle collides with the circle.
check for rectangle corners within the circle.
For each edge, see if there is a line intersection with the circle. Project the center point C onto the line AB to get a point D. If the length of CD is less than radius, there was a collision.
projectionScalar=dot(AC,AB)/(mag(AC)*mag(AB));
if(projectionScalar>=0 && projectionScalar<=1) {
D=A+AB*projectionScalar;
CD=D-C;
if(mag(CD)<circle.radius){
// there was a collision
}
}
There is an incredibly simple way to do this, you have to clamp a point in x and y, but inside the square, while the center of the circle is between the two square border points in one of the perpendicular axis you need to clamp those coordinates to the parallel axis, just make sure the clamped coordinates do not exeed the limits of the square.
Then just get the distance between the center of the circle and the clamped coordinates and check if the distance is less than the radius of the circle.
Here is how I did it (First 4 points are the square coordinates, the rest are circle points):
bool DoesCircleImpactBox(float x, float y, float x1, float y1, float xc, float yc, float radius){
float ClampedX=0;
float ClampedY=0;
if(xc>=x and xc<=x1){
ClampedX=xc;
}
if(yc>=y and yc<=y1){
ClampedY=yc;
}
radius = radius+1;
if(xc<x) ClampedX=x;
if(xc>x1) ClampedX=x1-1;
if(yc<y) ClampedY=y;
if(yc>y1) ClampedY=y1-1;
float XDif=ClampedX-xc;
XDif=XDif*XDif;
float YDif=ClampedY-yc;
YDif=YDif*YDif;
if(XDif+YDif<=radius*radius) return true;
return false;
}
My method:
Calculate closest_point from the circle on/in OBB / rectangle
(Closest point will lie on an edge/corner or inside)
Calculate squared_distance from the closest_point to the centre of the circle
(Squared distance avoids a square root)
Return squared_distance <= circle radius squared
Assuming you have the four edges of the rectangle check the distance from the edges to the center of the circle, if its less then the radius, then the shapes are intersecting.
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect

Resources