I'm trying to fit a simple Bayesian regression model to some right-skewed data. Thought I'd try setting family to a log-normal distribution. I'm using pymc3 wrapper BAMBI. Is there a way to build a custom family with a log-normal distribution?
It depends on what you want the mean function of the model to look like.
If you want a model like
then Yes, this is easily achieved by simply log transforming Y and then estimating the usual linear model with Normal response. Notice that in this model Y is an exponential function of the predictor X, so when plotting Y against X (both untransformed), the regression line can curve up or down. It also has a multiplicative error term so that the variance is greater for larger predicted Y values. We can say that such a model has a log link function and a lognormal response.
But if you want a model like
then No, this kind of model is not currently supported by bambi*. This is a model with a lognormal response but an identity link function. The regression of Y on X is a straight line, but the errors have the same lognormal distribution at every point along X, so that the variance does not increase for larger predicted Y values. Note that this is an unusual model that I personally have never actually seen used.
* It's possible in theory to roll your own custom Families (although it would require some slight hacking), but the way this is designed in bambi ultimately depends on the families implemented in statsmodels.genmod, which does not currently include lognormal.
Unless I'm misunderstanding something, I think all you need to do is specify link='log' in the fit() call. If your assumption is correct, the exponentiated linear prediction will be normally distributed, and the default error distribution is gaussian, so I don't think you need to build a custom family for this—the default gaussian family with a log link should work fine. But feel free to clarify if this doesn't address your question.
Related
I am confused about how gpytorch calculates the gradients with respect to parameters of the model. For instance, lets say I am using ExactGP with Gaussian likelihood, RBF kernel, and constant mean and using MLE (maximum likelihood estimate) for finding the parameters of the model (mean, kernel parameters, and noise). One way to calculate the gradient w.r.t parameters of the model is using analytical gradient which means taking derivative of negative log-likelihood with respect to parameters and finding the equation for each derivation. Another way is to use automatic differentiation provided by pytorch.
Gpytorch authors have mentioned in their paper with the title of "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration" that they are using analytical gradient or at least this is what I understood by reading the paper. Am I correct? Also, I couldn't find the code that they have implemented the analytical gradient.
Could anyone help me understand this better, please?
The "automatic differentiation provided by PyTorch" does compute the analytic gradient (via back-propagation, note that there is no finite differencing or anything like that involved) - it just does so automatically.
https://github.com/cornellius-gp/gpytorch/discussions/1949#discussioncomment-2384471
I have a particular classification problem that I was able to improve using Python's abs() function. I am still somewhat new when it comes to machine learning, and I wanted to know if what I am doing is actually "allowed," so to speak, for improving a regression problem. The following line describes my method:
lr = linear_model.LinearRegression()
predicted = abs(cross_val_predict(lr, features, labels_postop_IS, cv=10))
I attempted this solution because linear regression can sometimes produce negative predictions values, even though my particular case, these predictions should never be negative, as they are a physical quantity.
Using the abs() function, my predictions produce a better fit for the data.
Is this allowed?
Why would it not be "allowed". I mean if you want to make certain statistical statements (like a 95% CI e.g.) you need to be careful. However, most ML practitioners do not care too much about underlying statistical assumptions and just want a blackbox model that can be evaluated based on accuracy or some other performance metric. So basically everything is allowed in ML, you just have to be careful not to overfit. Maybe a more sensible solution to your problem would be to use a function that truncates at 0 like f(x) = x if x > 0 else 0. This way larger negative values don't suddenly become large positive ones.
On a side note, you should probably try some other models as well with more parameters like a SVR with a non-linear kernel. The thing is obviously that a LR fits a line, and if this line is not parallel to your x-axis (thinking in the single variable case) it will inevitably lead to negative values at some point on the line. That's one reason for why it is often advised not to use LRs for predictions outside the "fitted" data.
A straight line y=a+bx will predict negative y for some x unless a>0 and b=0. Using logarithmic scale seems natural solution to fix this.
In the case of linear regression, there is no restriction on your outputs.
If your data is non-negative (as in your case the values are physical quantities and cannot be negative), you could model using a generalized linear model (GLM) with a log link function. This is known as Poisson regression and is helpful for modeling discrete non-negative counts such as the problem you described. The Poisson distribution is parameterized by a single value λ, which describes both the expected value and the variance of the distribution.
I cannot say your approach is wrong but a better way is to go towards the above method.
This results in an approach that you are attempting to fit a linear model to the log of your observations.
I am pretty new to Tensorflow, and I am currently learning it through given website https://www.tensorflow.org/get_started/get_started
It is said in the manual that:
We've created a model, but we don't know how good it is yet. To evaluate the model on training data, we need a y placeholder to provide the desired values, and we need to write a loss function.
A loss function measures how far apart the current model is from the provided data. We'll use a standard loss model for linear regression, which sums the squares of the deltas between the current model and the provided data. linear_model - y creates a vector where each element is the corresponding example's error delta. We call tf.square to square that error. Then, we sum all the squared errors to create a single scalar that abstracts the error of all examples using tf.reduce_sum:"
q1."we don't know how good it is yet.", I didn't understand this
quote as the simple model created is a simple slope equation and on
what it should train for?, as the model is a simple slope. Is it
require an perfect slope or what? why am I training that model and
for what?
q2.what is a loss function? Is loss function is used to determine the
accuracy of the model? Why is it required?
q3. I didn't understand " 'sums the squares of the deltas' between
the current model and the provided data."
q4.I didn't understood this part of code,"squared_deltas =
tf.square(linear_model - y)
this is the code:
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
this may be simple questions, but I am a beginner to Tensorflow and having a hard time understanding it.
1) So you're kind of right about "Why should we train for a simple problem" but this is just an introduction piece. With any machine learning task you need to evaluate your model to see how good it is. In this case you are just trying to train to find the coefficients for the line of best fit.
2) A loss function in any machine learning context represents your error with your model. This usually means a function of your "distance" of your calculated value to the ground truth value. Think of it as an internal evaluation score. You want to minimise your loss so the gradients and parameter changes are based on your loss.
3/4) Your question here is more to do with least square regression. It's a statistical method to create lines of best fit between points. The deltas represent the differences between your calculated values and the truth values. The aim is to minimise the area of the squares and hence minise the error and have a better line of best fit.
What you are doing in this Tensorflow example is creating a machine learning model that will learn the coefficients for the line of best fit automatically using a least squares based system.
Pretty much all of your question have to-do with the loss function.
The loss function is a function that determines how far apart your output are from the expected (correct) output.
It has two usages:
Help the algorithm determine if the tweaking of the weight is helping going in the good or bad direction
Determinate the accuracy (~the number of time your system guesses the correct answer)
The loss function is the sum of the deltas witch is: the addition of the diff (delta) between the expected output and the actual output.
I think It's squared to magnifies the error the algorithm makes.
In the Java version of LIBLINEAR there is a class called 'SolverType' in which one can choose type of the loss function to which they want to optimize the function. For example 'SolverType.L2LOSS_SVM_DUAL'. Is there any way to define a user-defined loss function?
The short answer is no.
The "loss function" defines the optimization problem, in fact this parameter changes (in particular) this model to
linear regression
logistic regression
support vector machine
While first two are quite similar, third requires completely different machinery to solve it, much more complex methods. In particular one can define very arbitrary functions, which fall into "linear models" category, which are unsolvable (are solvable by very complex techniques).
On the other hand, if the function is very simple, ie. it is a differentiable function, without any bounds (optimization is performed on the whole parameters space) then (assuming you know analytical form of the derivatives) you can plug it in into any steepest descent algorithm implementation (there are dozens of such solvers avaliable).
SVM is formulated as a QP problem.
minimize ||w|| w.r.t
y * (w'x) >= 1 for all (x, y) in the training dataset
This is the dual form of the problem and the objective is to minimize the L2 norm of the weight w.
If you change the objective ||w|| then it is no longer SVM. However, you can change the weight of training examples. You can find a tutorial here:
http://scikit-learn.org/stable/modules/svm.html#unbalanced-problems
I am working with sklearn's implementation of KNN. While my input data has about 20 features, I believe some of the features are more important than others. Is there a way to:
set the feature weights for each feature when "training" the KNN learner.
learn what the optimal weight values are with or without pre-processing the data.
On a related note, I understand generally KNN does not require training but since sklearn implements it using KDTrees, the tree must be generated from the training data. However, this sounds like its turning KNN into a binary tree problem. Is that the case?
Thanks.
kNN is simply based on a distance function. When you say "feature two is more important than others" it usually means difference in feature two is worth, say, 10x difference in other coords. Simple way to achive this is by multiplying coord #2 by its weight. So you put into the tree not the original coords but coords multiplied by their respective weights.
In case your features are combinations of the coords, you might need to apply appropriate matrix transform on your coords before applying weights, see PCA (principal component analysis). PCA is likely to help you with question 2.
The answer to question to is called "metric learning" and currently not implemented in Scikit-learn. Using the popular Mahalanobis distance amounts to rescaling the data using StandardScaler. Ideally you would want your metric to take into account the labels.