NASM assembler infinite loop with cx register - linux

section .data:
msg1: db "Hello 10 times!"
msglen1: equ $-msg1
section .text:
global _initial:
global _start:
global _end:
_initial:
mov cx,10
_start:
dec cx
mov ecx,msg1
mov edx,msglen1
mov eax,4
int 80h
cmp cx,0
jz _end
jmp _start
_end
mov eax,1
int 80h
Above code had to be produce "Hello 10 times" 10 times.But it getting go into infinite loop,and i couldn't understand why ?
i think cx register doesn't decrease or whatever else ?

You have a number of problems.
The default entry point for a Linux program is _start. Your program starts by executing at label _start not at initial so your loop counter isn't being initialized.
Section names do not have a : on the name, and neither do labels for the global1
You are missing a parameter for the SYS_Write system call. The 32-bit system calls are documented in a table:
You need to set EBX to a file descriptor. STDIN=0, STDOUT = 1, STDERR=2. You want to write to the console so you need to set EBX to 1 before calling Int 80h
You are clobbering one of the parameters (ECX) to the SYS_Write system call. CX and ECX are part of the same register. CX is the lower 16-bits of ECX. Changing CX changes ECX. You need to use some other register for the loop counter. ESI, EDI, and EBP are currently unused in your code. Change all occurrences of CX to the 32-bit register ESI.
Your code could look like:
section .data
msg1: db "Hello 10 times!", 10
; Add 10 on the end of the string for Line Feed
; so each message prints on separate line
msglen1 equ $-msg1
section .text
global _initial
global _start
global _end
_start:
mov esi, 10 ; Initialize loop counter
_msgloop:
dec esi ; Decrement loop counter
mov ebx, 1 ; File Descriptor 1 = Write to Standard Output (STDOUT)
mov ecx, msg1 ; Address of message to print
mov edx, msglen1 ; Length of message to print
mov eax, 4 ; SYS_Write system call = 4
int 80h
cmp esi, 0 ; Has the loop counter reached 0?
jz _end ; If it has then we are done
jmp _msgloop ; otherwise go back and print message again
_end:
mov eax,1 ; SYS_Exit system call
int 80h
You could have rewritten your loop this way:
section .data
msg1: db "Hello 10 times!", 10
; Add 10 on the end of the string for Line Feed
; so each message prints on separate line
msglen1 equ $-msg1
section .text
global _start
_start:
mov esi, 10 ; Initialize loop counter
.msgloop:
mov ebx, 1 ; File Descriptor 1 = Write to Standard Output (STDOUT)
mov ecx, msg1 ; Address of message to print
mov edx, msglen1 ; Length of message to print
mov eax, 4 ; SYS_Write system call = 4
int 80h
dec esi ; Decrement loop counter
jnz .msgloop ; If loop counter hasn't reached zero then print again
mov eax,1 ; SYS_Exit system call
int 80h
Footnotes:
1You don't need to make initial and end global since you aren't linking to any other object files. Those global lines can be removed.

You're trying to use the cx register for your loop count, while needing to use ecx as a parameter for your output. Since cx is the lower 16 bits of ecx, you clobber your loop count.
You need to either use some other register (that is not used during the system call) for you loop count, or store the count in a local variable on the stack.

Related

To display characters in reverse order using nasm [infinite loop running]

THE PROGRAM IS USED TO ACCEPT CHARACTERS AND DISPLAY THEM IN REVERSE ORDER
The code is included here:
section .bss
num resb 1
section .text
global _start
_start:
call inputkey
call outputkey
;Output the number entered
mov eax, 1
mov ebx, 0
int 80h
inputkey:
;Read and store the user input
mov eax, 3
mov ebx, 2
mov ecx, num
mov edx, 1
int 80h
cmp ecx, 1Ch
je .sub2
push ecx
jmp inputkey
.sub2:
push ecx
ret
outputkey:
pop ecx
;Output the message
mov eax, 4
mov ebx, 1
;mov ecx, num
mov edx, 1
int 80h
cmp ecx, 1Ch
je .sub1
jmp outputkey
.sub1:
ret
The code to compile and run the program
logic.asm
is given here:
nasm -f elf logic.asm
ld -m elf_i386 -s -o logic logic.o
./logic
There are a few problems with the code. Firstly, for the sys_read syscall (eax = 3) you supplied 2 as the file descriptor, however 2 refers to stderr, but in this case you'd want stdin, which is 0 (I like to remember it as the non-zero numbers 1 and 2 being the output).
Next, an important thing to realize about the ret instruction is that it pops the value off the top of the stack and returns to it (treating it as an address). Meaning that even if you got to the .sub2 label, you'd likely get a segfault. With this in mind, the stack also tends to not be permanent storage, as in it is not preserved throughout procedures, so I'd recommend just making your buffer larger to e.g. 256 bytes and increment a value to point to an index in the buffer. (Using a fixed-size buffer will keep you from getting into the complications of memory allocation early, though if you want to go down that route you could do an external malloc call or just an mmap syscall.)
To demonstrate what I mean by an index into the reserved buffer:
section .bss
buf resb 256
; ...
inputkey:
xor esi, esi ; clear esi register, we'll use it as the index
mov eax, 3
mov ebx, 0 ; stdin file descriptor
mov edx, 1 ; read one byte
.l1: ; loop can start here instead of earlier, since the values eax, ebx and edx remain unchanged
lea ecx, [buf+esi] ; load the address of buf + esi
int 80h
cmp [buf+esi], 0x0a ; check for a \n character, meaning the user hit enter
je .e1
inc esi
jmp .l1
.e1:
ret
In this case, we also get to preserve esi up until the output, meaning that to reverse the input, we just print in descending order.
outputkey:
mov eax, 4
mov ebx, 1 ; stdout
mov edx, 1
.l2:
lea ecx, [buf+esi]
int 80h
test esi, esi ; if esi is zero it will set the ZF flag
jz .e2:
jmp .l2
.e2:
ret
Note: I haven't tested this code, so if there are any issues with it let me know.

Converting user input to all caps in assembly (NASM) [duplicate]

This question already has answers here:
X86 NASM Assembly converting lower to upper and upper to lowercase characters
(5 answers)
X86 Assembly Converting lower-case to uppercase
(1 answer)
Closed 3 years ago.
I want to change the string to all caps, although I am having trouble getting the length of the input. What i have tried so far is moving the address of the message into a registrar then indexing through the string and also increment a counter variable. Then comparing the char in the address to a '.' (signifying the end of the message) and if its found not to be equal it will recall this block of statements. At least this is what I want my code to do. Not sure if this is even the right logic. I know there are alot of errors and its messy but I'm learning so please just focus on my main question. thank you! EDIT: the input i use is 'this is a TEST.'
;nasm 2.11.08
SYS_Write equ 4
SYS_Read equ 3
STDIN equ 0
STDOUT equ 1
section .bss
message resb 15
counter resb 2
section .data
msg1: db 'Enter input (with a period) that I will turn into all capitals!',0xa ;msg for input
len1 equ $- msg1
section .text
global _start
_start:
mov eax, SYS_Write ; The system call for write (sys_write)
mov ebx, STDOUT ; File descriptor 1 - standard output
mov ecx, msg1 ; msg to print
mov edx, len1 ; len of message
int 0x80 ; Call the kernel
mov eax, SYS_Read ;system call to read input
mov ebx, STDIN ;file descriptor
mov ecx, message ;variable for input
mov edx, 15 ;size of message
int 0x80 ;kernel call
mov [counter], byte '0'
getLen:
mov eax, message
add eax, [counter]
inc byte [counter]
cmp eax, '.'
jne getLen
mov eax, SYS_Write ; this is to print the counter to make sure it got the right len
mov ebx, STDOUT
mov ecx, counter
mov edx, 2
int 0x80
jmp end
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov eax, [message]
;add eax, counter
cmp eax, 90
jg toUpper
toUpper:
sub eax, 32
mov [message], eax
mov eax, SYS_Write ; The system call for write (sys_write)
mov ebx, STDOUT ; File descriptor 1 - standard output
mov ecx, message ; Put the offset of hello in ecx
mov edx, 10 ; helloLen is a constant, so we don't need to say
int 0x80 ; Call the kernel
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
end:
mov eax,1 ; The system call for exit (sys_exit)
mov ebx,0 ; Exit with return code of 0 (no error)
int 0x80 ;

Display contents of register

hi i need help displaying contents of a register.my code is below.i have been able to display values of the data register but i want to display flag states. eg 1 or 0. and it would be helpful if to display also the contents of other registers like esi,ebp.
my code is not printing the states of the flags ..what am i missing
section .text
global _start ;must be declared for using gcc
_start : ;tell linker entry point
mov eax,msg ; moves message "rubi" to eax register
mov [reg],eax ; moves message from eax to reg variable
mov edx, 8 ;message length
mov ecx, [reg];message to write
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int 0x80 ;call kernel
mov eax, 100
mov ebx, 100
cmp ebx,eax
pushf
pop dword eax
mov [save_flags],eax
mov edx, 8 ;message length
mov ecx,[save_flags] ;message to write
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int 0x80
mov eax, 1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db "rubi",10
section .bss
reg resb 100
save_flags resw 100
I'm not going for anything fancy here since this appears to be a homework assignment (two people have asked the same question today). This code should be made as a function, and it can have its performance enhanced. Since I don't get an honorary degree or an A in the class it doesn't make sense to me to offer the best solution, but one you can work from:
BITS_TO_DISPLAY equ 32 ; Number of least significant bits to display (1-32)
section .text
global _start ; must be declared for using gcc
_start : ; tell linker entry point
mov edx, msg_len ; message length
mov ecx, msg ; message to write
mov ebx, 1 ; file descriptor (stdout)
mov eax, 4 ; system call number (sys_write)
int 0x80 ; call kernel
mov eax, 100
mov ebx, 100
cmp ebx,eax
pushf
pop dword eax
; Convert binary to string by shifting the right most bit off EAX into
; the carry flag (CF) and convert the bit into a '0' or '1' and place
; in the save_flags buffer in reverse order. Nul terminate the string
; in the event you ever wish to use printf to print it
mov ecx, BITS_TO_DISPLAY ; Number of bits of EAX register to display
mov byte [save_flags+ecx], 0 ; Nul terminate binary string in case we use printf
bin2ascii:
xor bl, bl ; BL = 0
shr eax, 1 ; Shift right most bit into carry flag
adc bl, '0' ; bl = bl + '0' + Carry Flag
mov [save_flags-1+ecx], bl ; Place '0'/'1' into string buffer in reverse order
dec ecx
jnz bin2ascii ; Loop until all bits processed
mov edx, BITS_TO_DISPLAY ; message length
mov ecx, save_flags ; address of binary string to write
mov ebx, 1 ; file descriptor (stdout)
mov eax, 4 ; system call number (sys_write)
int 0x80
mov eax, 1 ;system call number (sys_exit)
int 0x80 ;call kernel
section .data
msg db "rubi",10
msg_len equ $ - msg
section .bss
save_flags resb BITS_TO_DISPLAY+1 ; Add one byte for nul terminator in case we use printf
The idea behind this code is that we continually shift the bits (using the SHR instruction) in the EAX register to the right one bit at a time. The bit that gets shifted out of the register gets placed in the carry flag (CF). We can use ADC to add the value of the carry flag (0/1) to ASCII '0' to get an ASCII value of '0` and '1'. We place these bytes into destination buffer in reverse order since we are moving from right to left through the bits.
BITS_TO_DISPLAY can be set between 1 and 32 (since this is 32-bit code). If you are interested in the bottom 8 bits of a register set it to 8. If you want to display all the bits of a 32-bit register, specify 32.
Note that you can pop directly into memory.
And if you want to binary dump register and flag data with write(2), your system call needs to pass a pointer to the buffer, not the data itself. Use a mov-immediate to get the address into the register, rather than doing a load. Or lea to use a RIP-relative addressing mode. Or pass a pointer to where it's sitting on the stack, instead of copying it to a global!
mov edx, 8 ;message length
mov ecx,[save_flags] ;message to write ;;;;;;; <<<--- problem
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int 0x80
Passing a bad address to write(2) won't cause your program to receive a SIGSEGV, like it would if you used that address in user-space. Instead, write will return EFAULT. And you're not checking the return status from your system calls, so your code doesn't notice.
mov eax,msg ; moves message "rubi" to eax register
mov [reg],eax ; moves message from eax to reg variable
mov ecx, [reg];
This is silly. You should just mov ecx, msg to get the address of msg into ecx, rather than bouncing it through memory.
Are you building for 64bit? I see you're using 8 bytes for a message length. If so, you should be using the 64bit function call ABI (with syscall, not int 0x80). The system-call numbers are different. See the table in one of the links at x86. The 32bit ABI can only accept 32bit pointers. You will have a problem if you try to pass a pointer that has any of the high32 bits set.
You're probably also going to want to format the number into a string, unless you want to pipe your program's output into hexdump.

How should I work with dynamically-sized input in NASM Assembly?

I'm trying to learn assembly with NASM on 64 bit Linux.
I managed to make a program that reads two numbers and adds them. The first thing I realized was that the program will only work with one-digit numbers (and results):
; Calculator
SECTION .data
msg1 db "Enter the first number: "
msg1len equ $-msg1
msg2 db "Enter the second number: "
msg2len equ $-msg2
msg3 db "The result is: "
msg3len equ $-msg3
SECTION .bss
num1 resb 1
num2 resb 1
result resb 1
SECTION .text
global main
main:
; Ask for the first number
mov EAX,4
mov EBX,1
mov ECX,msg1
mov EDX,msg1len
int 0x80
; Read the first number
mov EAX,3
mov EBX,1
mov ECX,num1
mov EDX,2
int 0x80
; Ask for the second number
mov EAX,4
mov EBX,1
mov ECX,msg2
mov EDX,msg2len
int 0x80
; Read the second number
mov EAX,3
mov EBX,1
mov ECX,num2
mov EDX,2
int 0x80
; Prepare to announce the result
mov EAX,4
mov EBX,1
mov ECX,msg3
mov EDX,msg3len
int 0x80
; Do the sum
; Store read values to EAX and EBX
mov EAX,[num1]
mov EBX,[num2]
; From ASCII to decimal
sub EAX,'0'
sub EBX,'0'
; Add
add EAX,EBX
; Convert back to EAX
add EAX,'0'
; Save the result back to the variable
mov [result],EAX
; Print result
mov EAX,4
mov EBX,1
mov ECX,result
mov EDX,1
int 0x80
As you can see, I reserve one byte for the first number, another for the second, and one more for the result. This isn't very flexible. I would like to make additions with numbers of any size.
How should I approach this?
First of all you are generating a 32-bit program, not a 64-bit program. This is no problem as Linux 64-bit can run 32-bit programs if they are either statically linked (this is the case for you) or the 32-bit shared libraries are installed.
Your program contains a real bug: You are reading and writing the "EAX" register from a 1-byte field in RAM:
mov EAX, [num1]
This will normally work on little-endian computers (x86). However if the byte you want to read is at the end of the last memory page of your program you'll get a bus error.
Even more critical is the write command:
mov [result], EAX
This command will overwrite 3 bytes of memory following the "result" variable. If you extend your program by additional bytes:
num1 resb 1
num2 resb 1
result resb 1
newVariable1 resb 1
You'll overwrite these variables! To correct your program you must use the AL (and BL) register instead of the complete EAX register:
mov AL, [num1]
mov BL, [num2]
...
mov [result], AL
Another finding in your program is: You are reading from file handle #1. This is the standard output. Your program should read from file handle #0 (standard input):
mov EAX, 3 ; read
mov EBX, 0 ; standard input
...
int 0x80
But now the answer to the actual question:
The C library functions (e.g. fgets()) use buffered input. Doing it like this would be a bit to complicated for the beginning so reading one byte at a time could be a possibility.
Thinking the way "how would I solve this problem using a high-level language like C". If you don't use libraries in your assembler program you can only use system calls (section 2 man pages) as functions (e.g. you cannot use "fgets()" but only "read()").
In your case a C program reading a number from standard input could look like this:
int num1;
char c;
...
num1 = 0;
while(1)
{
if(read(0,&c,1)!=1) break;
if(c=='\r' || c=='\n') break;
num1 = 10*num1 + c - '0';
}
Now you may think about the assembler code (I typically use GNU assembler, which has another syntax, so maybe this code contains some bugs):
c resb 1
num1 resb 4
...
; Set "num1" to 0
mov EAX, 0
mov [num1], EAX
; Here our while-loop starts
next_digit:
; Read one character
mov EAX, 3
mov EBX, 0
mov ECX, c
mov EDX, 1
int 0x80
; Check for the end-of-input
cmp EAX, 1
jnz end_of_loop
; This will cause EBX to be 0.
; When modifying the BL register the
; low 8 bits of EBX are modified.
; The high 24 bits remain 0.
; So clearing the EBX register before
; reading an 8-bit number into BL is
; a method for converting an 8-bit
; number to a 32-bit number!
xor EBX, EBX
; Load the character read into BL
; Check for "\r" or "\n" as input
mov BL, [c]
cmp BL, 10
jz end_of_loop
cmp BL, 13
jz end_of_loop
; read "num1" into EAX
mov EAX, [num1]
; Multiply "num1" with 10
mov ECX, 10
mul ECX
; Add one digit
sub EBX, '0'
add EAX, EBX
; write "num1" back
mov [num1], EAX
; Do the while loop again
jmp next_digit
; The end of the loop...
end_of_loop:
; Done
Writing decimal numbers with more digits is more difficult!

NASM Linux Assembly Printing Integers

I am trying to print a single digit integer in nasm assembly on linux. What I currently have compiles fine, but nothing is being written to the screen. Can anyone explain to me what I am doing wrong here?
section .text
global _start
_start:
mov ecx, 1 ; stores 1 in rcx
add edx, ecx ; stores ecx in edx
add edx, 30h ; gets the ascii value in edx
mov ecx, edx ; ascii value is now in ecx
jmp write ; jumps to write
write:
mov eax, ecx ; moves ecx to eax for writing
mov eax, 4 ; sys call for write
mov ebx, 1 ; stdout
int 80h ; call kernel
mov eax,1 ; system exit
mov ebx,0 ; exit 0
int 80h ; call the kernel again
This is adding, not storing:
add edx, ecx ; stores ecx in edx
This copies ecx to eax and then overwrites it with 4:
mov eax, ecx ; moves ecx to eax for writing
mov eax, 4 ; sys call for write
EDIT:
For a 'write' system call:
eax = 4
ebx = file descriptor (1 = screen)
ecx = address of string
edx = length of string
After reviewing the other two answers this is what I finally came up with.
sys_exit equ 1
sys_write equ 4
stdout equ 1
section .bss
outputBuffer resb 4
section .text
global _start
_start:
mov ecx, 1 ; Number 1
add ecx, 0x30 ; Add 30 hex for ascii
mov [outputBuffer], ecx ; Save number in buffer
mov ecx, outputBuffer ; Store address of outputBuffer in ecx
mov eax, sys_write ; sys_write
mov ebx, stdout ; to STDOUT
mov edx, 1 ; length = one byte
int 0x80 ; Call the kernel
mov eax, sys_exit ; system exit
mov ebx, 0 ; exit 0
int 0x80 ; call the kernel again
From man 2 write
ssize_t write(int fd, const void *buf, size_t count);
In addition to the other errors that have been pointed out, write() takes a pointer to the data and a length, not an actual byte itself in a register as you are trying to provide.
So you will have to store your data from a register to memory and use that address (or if it's constant as it currently is, don't load the data into a register but load its address instead).

Resources