I'm writing a query that gets data from "coll2" based on data that is inside "coll1".
Coll1 has the following data structure:
{
"_id": "asdf",
"name": "John",
"bags": [
{
"type": "typ1",
"size": "siz1"
},
{
"type": "typ2",
"size": "siz2"
}
]
}
Coll2 has the following data structure:
{
_id: "qwer",
coll1Name: "John",
types: ["typ1", "typ3"],
sizes: ["siz1", "siz4"]
}
{
_id: "zxcv",
coll1Name: "John",
types: ["typ2", "typ3"],
sizes: ["siz1", "siz2"]
}
{
_id: "fghj",
coll1Name: "John",
types: ["typ2", "typ3"],
sizes: ["siz1", "siz4"]
}
I want to get all the documents in coll2 that have the same Type+Size combo as in coll1 using the $lookup stage of the aggregation pipeline. I understand that this can be achieved by using the $lookup pipeline and $expr but I cant seem to figure out how to dynamically make a query to pass into the $match stage.
The output I would like to get for the above data would be:
{
_id: "qwer",
coll1Name: "John",
types: ["typ1", "typ3"],
sizes: ["siz1", "siz4"]
}
{
_id: "zxcv",
coll1Name: "John",
types: ["typ2", "typ3"],
sizes: ["siz1", "siz2"]
}
You can use $lookup to get the data from Col2. Then you need to check if there's any element in Col2 ($anyElemenTrue) that matches with Col1. $map and $in can be used here. Then you just need to $unwind and promote Col2 to root level using $replaceRoot
db.Col1.aggregate([
{
$lookup: {
from: "Col2",
localField: "name",
foreignField: "coll1Name",
as: "Col2"
}
},
{
$project: {
Col2: {
$filter: {
input: "$Col2",
as: "c2",
cond: {
$anyElementTrue: {
$map: {
input: "$bags",
as: "b",
in: {
$and: [
{ $in: [ "$$b.type", "$$c2.types" ] },
{ $in: [ "$$b.size", "$$c2.sizes" ] },
]
}
}
}
}
}
}
}
},
{
$unwind: "$Col2"
},
{
$replaceRoot: {
newRoot: "$Col2"
}
}
])
You are correct in your approach to use $lookup with the pipeline field to filter the input documents in the $match pipeline
The $expr expression should typically follow
"$expr": {
"$and": [
{ "$eq": [ "$name", "$$coll1_name" ] },
{ "$setEquals": [ "$bags.type", "$$types" ] },
{ "$setEquals": [ "$bags.size", "$$sizes" ] }
]
}
where the first match expression in the $and conditional { "$eq": [ "$name", "$$coll1_name" ] } checks to see if the name field in coll1 collection matches the coll1Name field in the input documents from coll2.
Of course the fields from coll2 should be defined in a variable in the pipeline with the let field for the $lookup pipeline to access them.
The other match filters are basically checking if the arrays are equal where "$bags.type" from coll1 resolves to an array of types i.e. [ "typ1", "typ3" ] for example.
On getting the output field from $lookup which happens to be an array, you can filter the documents in coll2 on that array field where there can be some empty lists as a resul of the above $lookup pipeline $match filter:
{ "$match": { "coll1Data.0": { "$exists": true } } }
Overall your aggregate pipeline operation would be as follows:
db.getCollection('coll2').aggregate([
{ "$lookup" : {
"from": "coll1",
"let": { "coll1_name": "$coll1Name", "types": "$types", "sizes": "$sizes" },
"pipeline": [
{ "$match": {
"$expr": {
"$and": [
{ "$eq": [ "$name", "$$coll1_name" ] },
{ "$setEquals": [ "$bags.type", "$$types" ] },
{ "$setEquals": [ "$bags.size", "$$sizes" ] }
]
}
} }
],
"as": "coll1Data"
} },
{ "$match": { "coll1Data.0": { "$exists": true } } },
{ "$project": { "coll1Data": 0 } }
])
Related
hi everyone i am trying to project the cities which are belongs to particular state by taking the country_code and state_code
[
{
'$match': {
'iso2': 'IN'
}
}, {
'$project': {
'states': {
'$slice': [
'$states.cities.name', 1, 1
]
}
}
}
]
when i tried this i am getting the result but is there any better way to do it
tq
I would do it as follow:
db.collection.aggregate([
{
"$match": {
"iso2": "IN",
"states.state_code": "AG"
}
},
{
$addFields: {
states: {
"$filter": {
"input": "$states",
"as": "state",
"cond": {
"$eq": [
"$$state.state_code",
"AG"
]
}
}
}
}
},
{
$project: {
cities: "$states.cities.name"
}
},
{
$unwind: "$cities"
}
])
Explained:
Match only documents having iso2=IN and states.state_code=AG
( For this stage is good if you have index on at least {iso2:1} or compound index on {iso2:1,states.state_code:1} )
Filter only the states with state_code=AG
$project the names only
$unwind to flatten first array.
playground
I have the following collection (sectors):
[
{
sector: "IT",
organizations: [
{
org: "ACME",
owners: [
"Josh",
"Fred"
]
}
]
}
]
I also have another collection (owners):
[
{
name: "Josh",
age: 65,
male: true,
location: "LA"
}
]
I want the aggregation query to do the following:
For each sector document, go though each organization.
Find an owner document corresponding to index 0 of the owners array.
Add the { name, age, male } fields to the organization.
I want to get this result:
[
{
sector: "IT",
organizations: [
{
org: "ACME",
owners: [
"Josh",
"Fred"
],
name: "Josh",
age: 65,
male: true
}
]
}
]
I am writing this in Node.js. This is my current code:
await Sector.aggregate([
// Perhaps something with $lookup?
{ $match: query },
{ $skip: skip },
{ $limit: limit }
]);
I am totally new to aggregation with MongoDB. Can anyone tell me how it's done?
Thanks in advance.
You can use aggregation
$addFields and $arrayElementAt helps to get the first element by looking with $map
$unwind to deconstruct the array
$lookup to join collections
$group to reconstruct the array
Here is the code
db.collection1.aggregate([
{
$addFields: {
organizations: {
$map: {
input: "$organizations",
in: {
firstName: { "$arrayElemAt": [ "$$this.owners", 0 ] },
org: "$$this.org",
owners: "$$this.owners"
}
}
}
}
},
{ $unwind: "$organizations},
{
"$lookup": {
"from": "collection2",
"localField": "organizations.firstName",
"foreignField": "name",
"as": "join"
}
},
{ $addFields: { join: { "$arrayElemAt": [ "$join", 0 } } },
{
$addFields: {
"organizations.age": "$join.age",
"organizations.location": "$join.location",
"organizations.male": "$join.male",
"join": "$$REMOVE"
}
},
{
"$group": {
"_id": "$_id",
"organizations": { "$push": "$organizations" },
"sector": { $first: "$sector" }
}
}
])
Working Mongo playground
So these are my two documents
Order document:
{
"_id":"02a33b9a-284c-4869-885e-d46981fdd679",
"context":{
"products":[
{
"id": "e68fc86a-b4ad-4588-b182-ae9ee3db25e4",
"version": "2020-03-14T13:18:41.296+00:00"
}
],
},
}
Product document:
{
"_id":"e68fc86a-b4ad-4588-b182-ae9ee3db25e4",
"context":{
"name": "My Product",
"image": "someimage"
},
}
So I'm trying to do a lookup for a products in order document, but the result should contain combined fields, like so:
"products":[
{
"_id": "e68fc86a-b4ad-4588-b182-ae9ee3db25e4",
"version": "2020-03-14T13:18:41.296+00:00",
"name": "My Product",
"image": "someimage"
}
],
Not sure how to do this, should I do it outside of the lookup, or inside? This is my aggregation
Orders.aggregate([
{
"$lookup":{
"from":"products",
"let":{
"products":"$context.products"
},
"pipeline":[
{
"$match":{
"$expr":{
"$in":[
"$_id",
"$$products.id"
]
}
}
},
{
"$project":{
"_id":0,
"id":1,
"name":"$context.name"
}
}
],
"as":"mergedProducts"
}
},
{
"$project":{
"context":"$context",
"mergedProducts":"$mergedProducts"
}
},
]);
You need to run that mapping outside of $lookup by running $map along with $arrayElemAt to get single pair from both arrays and then apply $mergeObjects to get one object as a result:
db.Order.aggregate([
{
$lookup: {
from: "products",
localField: "context.products.id",
foreignField: "_id",
as: "productDetails"
}
},
{
$addFields: {
productDetails: {
$map: {
input: "$productDetails",
in: {
_id: "$$this._id",
name: "$$this.context.name"
}
}
}
}
},
{
$project: {
_id: 1,
"context.products": {
$map: {
input: "$context.products",
as: "prod",
in: {
$mergeObjects: [
"$$prod",
{ $arrayElemAt: [ { $filter: { input: "$productDetails", cond: { $eq: [ "$$this._id", "$$prod.id" ] } } }, 0 ] }
]
}
}
}
}
}
])
Mongo Playground
The goals of the last step is to take take two arrays: products and productDetails (the output of $lookup) and find matches between them. We know there's always one match so we can get only one item $arrayElemAt 0. As an output of $map there will be single array containing "merged" documents.
After many many tries, I can't have a nice conditional aggregation of my collections.
I use two collections :
races which have a collection of reviews.
I need to obtain for my second pipeline only the reviews published.
I don't want to use a $project.
Is it possible to use only the $match ?
When I use localField, foreignField, it works perfect, but I need to filter only the published reviews.
I struggled so much on this, I don't understand why the let don't give me the foreignKey.
I tried : _id, $reviews, etc..
My $lookup looks like this :
{
$lookup: {
from: "reviews",
as: "reviews",
let: { reviewsId: "$_id" },
pipeline: [
{
$match: {
$expr: {
$and: [
// If I comment the next line, it give all the reviews to all the races
{ $eq: ["$_id", "$$reviewsId"] },
{ $eq: ["$is_published", true] }
]
}
}
}
]
// localField: "reviews",
// foreignField: "_id"
}
},
Example of a race :
{
"description":"Nice race",
"attendees":[
],
"reviews":[
{
"$oid":"5c363ddcfdab6f1d822d7761"
},
{
"$oid":"5cbc835926fa61bd4349a02a"
}
],
...
}
Example of a review :
{
"_id":"5c3630ac5d00d1dc26273dab",
"user_id":"5be89576a38d2b260bfc1bfe",
"user_pseudo":"gracias",
"is_published":true,
"likes":[],
"title":"Best race",
"__v":10,
...
}
I will become crazy soon :'(...
How to accomplish that ?
Your problem is this line:
{ $eq: ["$is_published", true] }
You are using this document _id field to match the reviews one.
The correct version looks like this:
(
[
{
"$unwind" : "$reviews"
},
{
"$lookup" : {
"from" : "reviews",
"as" : "reviews",
"let" : {
"reviewsId" : "$reviews"
},
"pipeline" : [
{
"$match" : {
"$expr" : {
"$and" : [
{
"$eq" : [
"$_id",
"$$reviewsId"
]
},
{ $eq: ["$is_published", true] }
]
}
}
}
]
}
}
],
);
and now if your want to restore the old structure add:
{
$group: {
_id: "$_id",
reviews: {$push: "$reviews"},
}
}
First you have to take correct field to get the data from the referenced collection i.e. reviews. And second you need to use $in aggregation operator as your reviews field is an array of ObjectIds.
db.getCollection('races').aggregate([
{ "$lookup": {
"from": "reviews",
"let": { "reviews": "$reviews" },
"pipeline": [
{ "$match": {
"$expr": { "$in": [ "$_id", "$$reviews" ] },
"is_published": true
}}
],
"as": "reviews"
}}
])
I have 3 arrays of ObjectIds I want to concatenate into a single array, and then sort by creation date. $setUnion does precisely what I want, but I'd like to try without using it.
Schema of object I want to sort:
var chirpSchema = new mongoose.Schema({
interactions: {
_liked : ["55035390d3e910505be02ce2"] // [{ type: $oid, ref: "interaction" }]
, _shared : ["507f191e810c19729de860ea", "507f191e810c19729de860ea"] // [{ type: $oid, ref: "interaction" }]
, _viewed : ["507f1f77bcf86cd799439011"] // [{ type: $oid, ref: "interaction" }]
}
});
Desired result: Concatenate _liked, _shared, and _viewed into a single array, and then sort them by creation date using aggregate pipeline. See below
["507f1f77bcf86cd799439011", "507f191e810c19729de860ea", "507f191e810c19729de860ea", "55035390d3e910505be02ce2"]
I know I'm suppose to use $push, $each, $group, and $unwind in some combination or other, but I'm having trouble piecing together the documenation to make this happen.
Update: Query
model_user.aggregate([
{ $match : { '_id' : { $in : following } } }
, { $project : { 'interactions' : 1 } }
, { $project : {
"combined": { $setUnion : [
"$interactions._liked"
, "$interactions._shared"
, "$interactions._viewed"
]}
}}
])
.exec(function (err, data) {
if (err) return next(err);
next(data); // Combined is returning null
})
If all the Object _id values are "unique" then $setUnion is your best option. It is of course not "ordered" in any way as it works with a "set", and that does not guarantee order. But you can always unwind and $sort.
[
{ "$project": {
"combined": { "$setUnion": [
{ "$ifNull": [ "$interactions._liked", [] ] },
{ "$ifNull": [ "$interactions._shared", [] ] },
{ "$ifNull", [ "$interactions._viewed", [] ] }
]}
}},
{ "$unwind": "$combined" },
{ "$sort": { "combined": 1 } },
{ "$group": {
"_id": "$_id",
"combined": { "$push": "$combined" }
}}
]
Of course again since this is a "set" of distinct values you can do the old way instead with $addToSet, after processing $unwind on each array:
[
{ "$unwind": "$interactions._liked" },
{ "$unwind": "$interactions._shared" },
{ "$unwind": "$interactions._viewed" },
{ "$project": {
"interactions": 1,
"type": { "$const": [ "liked", "shared", "viewed" ] }
}}
{ "$unwind": "$type" },
{ "$group": {
"_id": "$_id",
"combined": {
"$addToSet": {
"$cond": [
{ "$eq": [ "$type", "liked" ] },
"$interactions._liked",
{ "$cond": [
{ "$eq": [ "$type", "shared" ] },
"$interactions._shared",
"$interactions._viewed"
]}
]
}
}
}},
{ "$unwind": "$combined" },
{ "$sort": { "combined": 1 } },
{ "$group": {
"_id": "$_id",
"combined": { "$push": "$combined" }
}}
]
But still the same thing applies to ordering.
Future releases even have the ability to concatenate arrays without reducing to a "set":
[
{ "$project": {
"combined": { "$concatArrays": [
"$interactions._liked",
"$interactions._shared",
"$interactions._viewed"
]}
}},
{ "$unwind": "$combined" },
{ "$sort": { "combined": 1 } },
{ "$group": {
"_id": "$_id",
"combined": { "$push": "$combined" }
}}
]
But still there is no way to re-order the results without procesing $unwind and $sort.
You might therefore consider that unless you need this grouped across multiple documents, that the basic "contenate and sort" operation is best handled in client code. MongoDB has no way to do this "in place" on the array at present, so per document in client code is your best bet.
But if you do need to do this grouping over multiple documents, then the sort of approaches as shown here are for you.
Also note that "creation" here means creation of the ObjectId value itself and not other properties from your referenced objects. If you need those, then you perform a populate on the id values after the aggregation or query instead, and of course sort in client code.