I have a long-running EMR step that executes spark-submit on EMR client mode. Between job executions, I manually restart the Spark context before the next execution if any configuration changes, like --executor-memory.
I'm running into the following exception when I try to restart the context with the new configuration with
currentSparkSession.close();
return SparkSession.builder().config(newConfig).getOrCreate();
19/05/23 15:52:35 ERROR SparkContext: Error initializing SparkContext.
java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:689)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:186)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:567)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2516)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:923)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:915)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:915)
.
.
.
19/05/23 15:52:35 INFO SparkContext: SparkContext already stopped.
19/05/23 15:52:35 WARN TransportChannelHandler: Exception in connection from /172.31.0.165:42556
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:221)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:899)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:275)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:643)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:566)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:480)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:442)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Thread.java:748)
I tried making the thread sleep a little in case there needs to be some time between the stop and start like:
currentSparkSession.close();
Thread.sleep(5000); // Sleep 5 seconds
return SparkSession.builder().config(newConfig).getOrCreate();
but that doesn't work either. I looked at the Spark source code and it looks like currentSparkSession.close() won't return until it's actually stopped anyways, so making the Thread sleep doesn't do anything.
I also see this in the container logs:
Error occurred during initialization of VM
Initial heap size set to a larger value than the maximum heap size
End of LogType:stdout
which confuses me because the only configured I changed between executions was --executor-memory, and I actually DECREASED it instead of increasing.
I've found similar questions on this site like Apache Spark running spark-shell on YARN error, but these suggestions look like they're essentially just turning off some resource manager validation checks that don't look very safe to me. Any suggestions?
This is because I tried sending a request with a lower --executor-memory (which happens to set Xmx, max heap size) than Xms (initial heap size), which was configured on the initial spark submit. The exception was thrown since max heap size can never be smaller than initial heap size.
Related
Spark 3.0.1
hadoop-aws 3.2.0
I have a simple spark streaming application that reads messages from Kafka topic, aggregates them and writes into Elasticsearch. I am using checkpointing and an S3 bucket to store them.
After some time application started to fail with the following exception:
[476.099s][warning][os,thread] Failed to start thread - pthread_create failed (EAGAIN) for attributes: stacksize: 1024k, guardsize: 0k, detached.
Error in TaskCompletionListener
java.lang.OutOfMemoryError: unable to create native thread: possibly out of memory or process/resource limits reached
at java.base/java.lang.Thread.start0(Native Method)
at java.base/java.lang.Thread.start(Thread.java:801)
at java.base/java.util.concurrent.ThreadPoolExecutor.addWorker(ThreadPoolExecutor.java:939)
at java.base/java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1345)
at com.google.common.util.concurrent.MoreExecutors$ListeningDecorator.execute(MoreExecutors.java:480)
at com.google.common.util.concurrent.AbstractListeningExecutorService.submit(AbstractListeningExecutorService.java:61)
at com.google.common.util.concurrent.ForwardingListeningExecutorService.submit(ForwardingListeningExecutorService.java:40)
at org.apache.hadoop.util.SemaphoredDelegatingExecutor.submit(SemaphoredDelegatingExecutor.java:112)
at com.google.common.util.concurrent.ForwardingListeningExecutorService.submit(ForwardingListeningExecutorService.java:40)
at org.apache.hadoop.util.SemaphoredDelegatingExecutor.submit(SemaphoredDelegatingExecutor.java:112)
at org.apache.hadoop.fs.s3a.S3ABlockOutputStream.putObject(S3ABlockOutputStream.java:434)
at org.apache.hadoop.fs.s3a.S3ABlockOutputStream.close(S3ABlockOutputStream.java:365)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.java:72)
at org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:101)
at org.apache.spark.sql.execution.streaming.CheckpointFileManager$RenameBasedFSDataOutputStream.cancel(CheckpointFileManager.scala:163)
at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$cancelDeltaFile(HDFSBackedStateStoreProvider.scala:507)
at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$HDFSBackedStateStore.abort(HDFSBackedStateStoreProvider.scala:150)
at org.apache.spark.sql.execution.streaming.state.package$StateStoreOps.$anonfun$mapPartitionsWithStateStore$2(package.scala:65)
at org.apache.spark.sql.execution.streaming.state.package$StateStoreOps.$anonfun$mapPartitionsWithStateStore$2$adapted(package.scala:64)
at org.apache.spark.TaskContext$$anon$1.onTaskCompletion(TaskContext.scala:125)
at org.apache.spark.TaskContextImpl.$anonfun$markTaskCompleted$1(TaskContextImpl.scala:124)
at org.apache.spark.TaskContextImpl.$anonfun$markTaskCompleted$1$adapted(TaskContextImpl.scala:124)
at org.apache.spark.TaskContextImpl.$anonfun$invokeListeners$1(TaskContextImpl.scala:137)
at org.apache.spark.TaskContextImpl.$anonfun$invokeListeners$1$adapted(TaskContextImpl.scala:135)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.TaskContextImpl.invokeListeners(TaskContextImpl.scala:135)
at org.apache.spark.TaskContextImpl.markTaskCompleted(TaskContextImpl.scala:124)
at org.apache.spark.scheduler.Task.run(Task.scala:143)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1130)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:630)
at java.base/java.lang.Thread.run(Thread.java:832)
VisualVM shows, that amount of threads rising from the beginning until it reaches the max (~4.8K):
image
And the majority of them are:
s3a-transfer-unbounded-poolXXX-tXX
s3a-transfer-shared-poolXXX-tXX
As I understood, the only place where these threads pools are created is
org.apache.hadoop.fs.s3a.S3AFileSystem#initialize
and Spark creates new filesystem every time
org.apache.spark.sql.execution.streaming.StreamMetadata#write
is called.
Why it is so? How can I prevent this thread creation?
you can't stop those threads being created as the thread pool is needed for the AWS transfer manager, which is in the AWS library. When S3A's close() method is called it shuts down the transfer manager, and the thread pool. Which means: the problem is that spark isn't closing down the FS instances.
Make sure you don't have caching of the FS instances disabled, e.g. fs.s3a.impl.disable.cache MUST be false. That is the default -so work out where it's being change and stop it.
spark.hadoop.fs.s3a.impl.disable.cache false
I tried to broadcast a DataFrame which turned out to be larger than spark.sql.autoBroadcastJoinThreshold, and the driver logged
Exception in thread "broadcast-exchange-0" java.lang.OutOfMemoryError Not enough memory to build and broadcast the table to all worker nodes. As a workaround, you can...
However, instead of returning to Driver thread and fail, the app just hangs and the driver is stuck at:
sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215)
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedNanos(AbstractQueuedSynchronizer.java:1037)
java.util.concurrent.locks.AbstractQueuedSynchronizer.tryAcquireSharedNanos(AbstractQueuedSynchronizer.java:1328)
scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:208)
scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)
scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:201)
org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:136)
org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:367)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:144)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:140)
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
...
...
spark.sql.broadcastTimeout is set to a quite high number due to other historic issues we had, and indeed the driver failed on timeout eventually, but still I wonder if this is the expected behavior? I tried to get my head around ThreadUtils.awaitResult but I can't find evidence that this is behavior is (explicitly) expected.
Can anyone confirm this is not a bug?
I am using Spark 2.2.0 to do data processing. I am using Dataframe.join to join 2 dataframes together, however I encountered this stack trace:
18/03/29 11:27:06 INFO YarnAllocator: Driver requested a total number of 0 executor(s).
18/03/29 11:27:09 ERROR FileFormatWriter: Aborting job null.
org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:123)
at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:248)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:126)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:98)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenInner(BroadcastHashJoinExec.scala:197)
at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:82)
at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:155)
...........
Caused by: org.apache.spark.SparkException: Cannot broadcast the table that is larger than 8GB: 10 GB
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:86)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:73)
at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:103)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
I searched on Internet for this error, but didn't get any hint or solution how to fix this.
Does Spark automatically broadcast Dataframe as part of the join? I am very surprise with this 8GB limit because I would have thought Dataframe supports "big data" and 8GB is not very big at all.
Thank you very much in advance for your advice on this.
Linh
After some reading, I've tried to disable the auto-broadcast and it seemed to work. Change Spark config with:
'spark.sql.autoBroadcastJoinThreshold': '-1'
Currently it is a hard limit in spark that the broadcast variable size should be less than 8GB. See here.
The 8GB size is generally big enough. If you consider that you re running a job with 100 executors, spark driver needs to send the 8GB data to 100 Nodes resulting 800GB network traffic. This cost will be much less if you don't broadcast and use simple join.
I have a spark job which fails with GC\Heap space error. When I inspect the terminal I can see the stacktrace:
Caused by: org.spark_project.guava.util.concurrent.ExecutionError: java.lang.OutOfMemoryError: Java heap space
at org.spark_project.guava.cache.LocalCache$Segment.get(LocalCache.java:2261)
at org.spark_project.guava.cache.LocalCache.get(LocalCache.java:4000)
at org.spark_project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004)
at org.spark_project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.compile(CodeGenerator.scala:890)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:357)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
at org.apache.spark.sql.execution.exchange.ShuffleExchange.prepareShuffleDependency(ShuffleExchange.scala:85)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute$1.apply(ShuffleExchange.scala:121)
at org.apache.spark.sql.execution.exchange.ShuffleExchange$$anonfun$doExecute$1.apply(ShuffleExchange.scala:112)
at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
... 77 more
Caused by: java.lang.OutOfMemoryError: Java heap space
at java.util.HashMap.resize(HashMap.java:703)
at java.util.HashMap.putVal(HashMap.java:628)
at java.util.HashMap.putMapEntries(HashMap.java:514)
at java.util.HashMap.putAll(HashMap.java:784)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:3073)
at org.codehaus.janino.UnitCompiler.access$4900(UnitCompiler.java:206)
at org.codehaus.janino.UnitCompiler$8.visitLocalVariableDeclarationStatement(UnitCompiler.java:2958)
at org.codehaus.janino.UnitCompiler$8.visitLocalVariableDeclarationStatement(UnitCompiler.java:2926)
at org.codehaus.janino.Java$LocalVariableDeclarationStatement.accept(Java.java:2974)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2925)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:3033)
at org.codehaus.janino.UnitCompiler.access$4400(UnitCompiler.java:206)
at org.codehaus.janino.UnitCompiler$8.visitSwitchStatement(UnitCompiler.java:2950)
at org.codehaus.janino.UnitCompiler$8.visitSwitchStatement(UnitCompiler.java:2926)
at org.codehaus.janino.Java$SwitchStatement.accept(Java.java:2866)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2925)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2982)
at org.codehaus.janino.UnitCompiler.access$3800(UnitCompiler.java:206)
at org.codehaus.janino.UnitCompiler$8.visitBlock(UnitCompiler.java:2944)
at org.codehaus.janino.UnitCompiler$8.visitBlock(UnitCompiler.java:2926)
at org.codehaus.janino.Java$Block.accept(Java.java:2471)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2925)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2999)
at org.codehaus.janino.UnitCompiler.access$4000(UnitCompiler.java:206)
at org.codehaus.janino.UnitCompiler$8.visitForStatement(UnitCompiler.java:2946)
at org.codehaus.janino.UnitCompiler$8.visitForStatement(UnitCompiler.java:2926)
at org.codehaus.janino.Java$ForStatement.accept(Java.java:2660)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2925)
at org.codehaus.janino.UnitCompiler.buildLocalVariableMap(UnitCompiler.java:2982)
at org.codehaus.janino.UnitCompiler.access$3800(UnitCompiler.java:206)
at org.codehaus.janino.UnitCompiler$8.visitBlock(UnitCompiler.java:2944)
at org.codehaus.janino.UnitCompiler$8.visitBlock(UnitCompiler.java:2926)
The problem is that the stacktrace doesn't appear on any of the workers logs (stdout and stderr) which I inspect using the webUI or directly the files on disk.
I do have a failed executor on the application which simply shows (stdout):
17:12:17,008 ERROR [TransportResponseHandler] Still have 1 requests outstanding when connection from /<IP1>:35482 is closed
17:12:17,010 ERROR [CoarseGrainedExecutorBackend] Executor self-exiting due to : Driver <IP1>:35482 disassociated! Shutting down.
The stderr file is empty.
This is a big issue for me since I don't always see the entire log/stacktrace in the console and I look for something mode reliable/persistent.
org.codehaus.janino package is used for whole-stage Java code generation (see the line with org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute in the stacktrace) that happens on the driver as part of query optimization (and before RDD is ready for execution).
The problem is that the stacktrace doesn't appear on any of the workers logs (stdout and stderr) which I inspect using the webUI or directly the files on disk.
There should be no stacktrace in any of the workers logs as nothing has been submitted for execution on executors (and hence on workers) yet. It has failed before executors got it to execute.
I'm having issues with the longevity of Spark-Kinesis Streaming application running on spark standalone cluster manager. The program runs for around 50 hours and stops receiving data from kinesis without giving any valid error why it stopped. But if i restart the application, it works for another day and half or so.
I'm seeing whole lot of errors during the program execution. I'm not sure this is the related to unexpected stoppage of events. Because these errors are there in logs even when the spark application is working fine.
There is no error specific to stoppage in driver or executor.Also I checked if there is any out of memory error but I was not able to spot in the logs. Could you please help me understand what are these error message means? Is this having anything to do with the longevity? Where do you think i should debug to understand whats happening with this?
2016-04-15 13:32:19 INFO KinesisRecordProcessor:58 - Shutdown: Shutting down workerId ip-10-205-1-150.us-west-2.compute.internal:6394789f-acb9-4702-8ea2-c2a3637d925a with reason ZOMBIE
2016-04-15 13:32:19 ERROR ShutdownTask:123 - Application exception.
java.lang.NullPointerException
at java.util.concurrent.ConcurrentHashMap.hash(ConcurrentHashMap.java:333)
at java.util.concurrent.ConcurrentHashMap.remove(ConcurrentHashMap.java:1175)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.removeCheckpointer(KinesisCheckpointer.scala:66)
at org.apache.spark.streaming.kinesis.KinesisReceiver.removeCheckpointer(KinesisReceiver.scala:249)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor.shutdown(KinesisRecordProcessor.scala:124)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.V1ToV2RecordProcessorAdapter.shutdown(V1ToV2RecordProcessorAdapter.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownTask.call(ShutdownTask.java:94)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:23)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
2016-04-15 13:32:19 ERROR ShutdownTask:123 - Application exception.
java.lang.NullPointerException
at java.util.concurrent.ConcurrentHashMap.hash(ConcurrentHashMap.java:333)
at java.util.concurrent.ConcurrentHashMap.remove(ConcurrentHashMap.java:1175)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.removeCheckpointer(KinesisCheckpointer.scala:66)
at org.apache.spark.streaming.kinesis.KinesisReceiver.removeCheckpointer(KinesisReceiver.scala:249)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor.shutdown(KinesisRecordProcessor.scala:124)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.V1ToV2RecordProcessorAdapter.shutdown(V1ToV2RecordProcessorAdapter.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownTask.call(ShutdownTask.java:94)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:48)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.MetricsCollectingTaskDecorator.call(MetricsCollectingTaskDecorator.java:23)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
016-04-15 13:33:12 INFO LeaseRenewer:235 - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5-095b-405f-ac9f-b7eff11e16d1 lost lease with key shardId-000000000046 - discovered during update
2016-04-15 13:33:12 WARN MetricsHelper:67 - No metrics scope set in thread RecurringTimer - Kinesis Checkpointer - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5- 095b-405f-ac9f-b7eff11e16d1, getMetricsScope returning NullMetricsScope.
2016-04-15 13:33:12 ERROR KinesisRecordProcessor:95 - ShutdownException: Caught shutdown exception, skipping checkpoint.
com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException: Can't update checkpoint - instance doesn't hold the lease for this shard
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibLeaseCoordinator.setCheckpoint(KinesisClientLibLeaseCoordinator.java:120)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.advancePosition(RecordProcessorCheckpointer.java:216)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:137)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply$mcV$sp(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor$.retryRandom(KinesisRecordProcessor.scala:145)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:75)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.checkpoint(KinesisCheckpointer.scala:75)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.org$apache$spark$streaming$kinesis$KinesisCheckpointer$$checkpointAll(KinesisCheckpointer.scala:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$1.apply$mcVJ$sp(KinesisCheckpointer.scala:117)
at org.apache.spark.streaming.util.RecurringTimer.triggerActionForNextInterval(RecurringTimer.scala:94)
at org.apache.spark.streaming.util.RecurringTimer.org$apache$spark$streaming$util$RecurringTimer$$loop(RecurringTimer.scala:106)
at org.apache.spark.streaming.util.RecurringTimer$$anon$1.run(RecurringTimer.scala:29)
2016-04-15 13:33:12 WARN KinesisCheckpointer:91 - Failed to checkpoint shardId shardId-000000000046 to DynamoDB.
com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException: Can't update checkpoint - instance doesn't hold the lease for this shard
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.KinesisClientLibLeaseCoordinator.setCheckpoint(KinesisClientLibLeaseCoordinator.java:120)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.advancePosition(RecordProcessorCheckpointer.java:216)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:137)
at com.amazonaws.services.kinesis.clientlibrary.lib.worker.RecordProcessorCheckpointer.checkpoint(RecordProcessorCheckpointer.java:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply$mcV$sp(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1$$anonfun$apply$1.apply(KinesisCheckpointer.scala:81)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.kinesis.KinesisRecordProcessor$.retryRandom(KinesisRecordProcessor.scala:145)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:81)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$checkpoint$1.apply(KinesisCheckpointer.scala:75)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.checkpoint(KinesisCheckpointer.scala:75)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer.org$apache$spark$streaming$kinesis$KinesisCheckpointer$$checkpointAll(KinesisCheckpointer.scala:103)
at org.apache.spark.streaming.kinesis.KinesisCheckpointer$$anonfun$1.apply$mcVJ$sp(KinesisCheckpointer.scala:117)
at org.apache.spark.streaming.util.RecurringTimer.triggerActionForNextInterval(RecurringTimer.scala:94)
at org.apache.spark.streaming.util.RecurringTimer.org$apache$spark$streaming$util$RecurringTimer$$loop(RecurringTimer.scala:106)
at org.apache.spark.streaming.util.RecurringTimer$$anon$1.run(RecurringTimer.scala:29)
2016-04-15 13:33:12 INFO LeaseRenewer:116 - Worker ip-10-205-1-151.us-west-2.compute.internal:188bd3f5-095b-405f-ac9f-b7eff11e16d1 lost lease with key shardId-000000000046
2016-04-15 13:33:12 INFO MemoryStore:58 - Block input-2-1460727103359 stored as values in memory (estimated size 120.3 KB, free 171.8 MB)