I am running a spark streaming job in my local and it is taking approximately 4 to 5 min for one batch. Can someone suggest what could be the issue with the bellow code?
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, FloatType, TimestampType
from pyspark.sql.functions import avg, window, from_json, from_unixtime, unix_timestamp
import uuid
schema = StructType([
StructField("source", StringType(), True),
StructField("temperature", FloatType(), True),
StructField("time", StringType(), True)
])
spark = SparkSession \
.builder.master("local[8]") \
.appName("poc-app") \
.getOrCreate()
spark.conf.set("spark.sql.shuffle.partitions", 5)
df1 = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "poc") \
.load() \
.selectExpr("CAST(value AS STRING)")
df2 = df1.select(from_json("value", schema).alias(
"sensors")).select("sensors.*")
df3=df2.select(df2.source,df2.temperature,from_unixtime(unix_timestamp(df2.time, 'yyyy-MM-dd HH:mm:ss')).alias('time'))
df4 = df3.groupBy(window(df3.time, "2 minutes","1 minutes"), df3.source).count()
query1 = df4.writeStream \
.outputMode("complete") \
.format("console") \
.option("checkpointLocation", "/tmp/temporary-" + str(uuid.uuid4())) \
.start()
query1.awaitTermination()
with mini-batch streaming you usually want to reduce the # of output partitions ... since you are doing some aggregation (wide transformation) every time you persist it will default to 200 partitions to disk because of
spark.conf.get("spark.sql.shuffle.partitions")
try lowering this config to a smaller output partition and place it at the beginning of your code so when the aggregation is performed it outputs 5 partitions to disk
spark.conf.set("spark.sql.shuffle.partitions", 5)
you can also get a feel by looking at the # of files in the output write stream directory as well as identifying the # of partitions in your aggregated df
df3.rdd.getNumPartitions()
btw since you are using a local mode for testing try setting to local[8] instead of local[4] so it increases the parallelism on your cpu cores (i assume you have 4)
Related
Below is my first program working with kafka and pyspark. The code seems to run without exceptions, but the output of my query is empty.
I am initiating spark and kafka. Later, in Kafka initiation, I subscribed the topic = "quickstart-events" and from terminal produced messages for this topic. But when I run this code, it gives me blank dataframes.
How do I resolve?
Code:
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, SparkSession, DataFrame
from pyspark.sql.types import StructType, ArrayType, StructField, IntegerType, StringType, DoubleType
spark = SparkSession.builder \
.appName("Spark-Kafka-Integration") \
.master("local[2]") \
.getOrCreate()
dsraw = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka:9092") \
.option("subscribe", "quickstart-events") \
.load()
ds = dsraw.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
print(type(ds))
rawQuery = dsraw \
.writeStream \
.queryName("query1")\
.format("memory")\
.start()
raw = spark.sql("select * from query1")
raw.show() # empty output
rawQuery = ds \
.writeStream \
.queryName("query2")\
.format("memory")\
.start()
raw = spark.sql("select * from query2")
raw.show() # empty output
print("complete")
Output:
+---+-----+-----+---------+------+---------+-------------+
|key|value|topic|partition|offset|timestamp|timestampType|
+---+-----+-----+---------+------+---------+-------------+
+---+-----+-----+---------+------+---------+-------------+
+---+-----+
|key|value|
+---+-----+
+---+-----+
if you are learning and experimenting with kafka spark streaming then it is fine.
just use:
while (True):
time.sleep(5)
print("queryresult")
raw.show() # it will start printing the result
instead of
raw.show() # it will run only once that's why not printig the result.
DO NOT USE for Production code.
Better to write like:
spark = SparkSession.builder \
.appName("Spark-Kafka-Integration") \
.master("local[2]") \
.getOrCreate()
dsraw = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka:9092") \
.option("subscribe", "quickstart-events") \
.load()
ds = dsraw.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
rawQuery = \
ds \
.writeStream \
.format("console") \
.outputMode("append") \
.start()
rawQuery.awaitTermination()
it will automatically print the result on the console.
I am using spark v2.4.0 and I am reading two separate streams from kafka and doing some different transformation on each one of them, now I want to persist both the streaming data-frames, but only One of them is getting persisted and the other one does not seem to work simultaneously, would be highly grateful for any help provided.
Below is my code,
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType
from pyspark.sql.functions import from_json, col, to_date
# Created a SparkSession here, as it is an entry point to underlying Spark functionality
spark = SparkSession.builder \
.master('spark://yash-tech:7077') \
.appName('Streaming') \
.getOrCreate()
# Defined a schema for our data being streamed from kafka
schema = StructType([
StructField("messageId", StringType(), True),
StructField("type", StringType(), True),
StructField("userId", StringType(), True),
StructField('data', StringType(), True),
StructField("timestamp", StringType(), True),
])
profileDF = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", 'test') \
.option("startingOffsets", "latest") \
.load() \
.select(from_json(col("value").cast("string"), schema).alias("value"))
# Using readStream on SparkSession to load a streaming Dataset from Kafka
clickStreamDF = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", 'test_new') \
.option("startingOffsets", "latest") \
.load() \
.select(from_json(col("value").cast("string"), schema).alias("value"))
# Selecting every column from the DF
clickStreamDFToPersist = clickStreamDF.select("value.*")
profileDFToPersist = profileDF.select("value.*")
# Added a new column containing date(yyyy-MM-dd) parsed from timestamp column for day wise partitioning
clickStreamDFToPersist = clickStreamDFToPersist.withColumn(
"date", to_date(col("timestamp"), "yyyy-MM-dd"))
# Writing data on local disk as json files, partitioned by userId.
clickStream_writing_sink = clickStreamDFToPersist.repartition(1) \
.writeStream \
.partitionBy('userId', 'date') \
.format("json") \
.option("path", "/home/spark/data/") \
.outputMode("append") \
.option("checkpointLocation", "/home/spark/event_checkpoint/") \
.trigger(processingTime='20 seconds') \
.start()
profile_writing_sink = profileDFToPersist.repartition(1) \
.writeStream \
.partitionBy('userId') \
.format("json") \
.option("path", "/home/spark/data/") \
.outputMode("append") \
.option("checkpointLocation", "/home/spark/profile_checkpoint/") \
.trigger(processingTime='30 seconds') \
.start()
clickStream_writing_sink.awaitTermination()
profile_writing_sink.awaitTermination()
NOTE:
I want both the writeStreams to write on the same path.
If I give different data paths in both the writeStreams then the code seems to work but the data gets persisted on different locations, is there a way that I can persist both the streams on same location, or if I can do both these transformation and persist data using single stream only as the location is same for both?
In one stream I am partitioning only using userId and in the other one I am doing userId + date partitioning.
Hi as we have the same path provided for the sink directory location so output are over written.
You cannot change the "part" prefix while using any of the standard output formats.
it could be possible if you can overwrite recordWriter().
I have a problem regrading the window in Spark Structed Streaming. I want to group the data i'm receiving continuously from kafka source in sliding window and count the number of data. The issue is that writestream streams the window dataframe each time there is data coming and update the count of the current window.
I'm using the following code to create the window:
#Define schema of the topic to be consumed
jsonSchema = StructType([ StructField("State", StringType(), True) \
, StructField("Value", StringType(), True) \
, StructField("SourceTimestamp", StringType(), True) \
, StructField("Tag", StringType(), True)
])
spark = SparkSession \
.builder \
.appName("StructuredStreaming") \
.config("spark.default.parallelism", "100") \
.getOrCreate()
df = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "10.129.140.23:9092") \
.option("subscribe", "SIMULATOR.SUPERMAN.TOTO") \
.load() \
.select(from_json(col("value").cast("string"), jsonSchema).alias("data")) \
.select("data.*")
df = df.withColumn("time", current_timestamp())
Window = df \
.withColumn("window",window("time","4 seconds","1 seconds")).groupBy("window").count() \
.withColumn("time", current_timestamp())
#Write back to kafka
query = Window.select(to_json(struct("count","window","time")).alias("value")) \
.writeStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "10.129.140.23:9092") \
.outputMode("update") \
.option("topic", "structed") \
.option("checkpointLocation", "/home/superman/notebook/checkpoint") \
.start()
The windows are not sorted and are updated each time there is a change in count. How can we wait for the end of the window and stream the final count one time. Instead of this output:
{"count":21,"window":{"start":"2019-05-13T09:39:14.000Z","end":"2019-05-13T09:39:18.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":47,"window":{"start":"2019-05-13T09:39:12.000Z","end":"2019-05-13T09:39:16.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":21,"window":{"start":"2019-05-13T09:39:13.000Z","end":"2019-05-13T09:39:17.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":21,"window":{"start":"2019-05-13T09:39:15.000Z","end":"2019-05-13T09:39:19.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":21,"window":{"start":"2019-05-13T09:39:16.000Z","end":"2019-05-13T09:39:20.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":42,"window":{"start":"2019-05-13T09:39:14.000Z","end":"2019-05-13T09:39:18.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":42,"window":{"start":"2019-05-13T09:39:15.000Z","end":"2019-05-13T09:39:19.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":21,"window":{"start":"2019-05-13T09:39:17.000Z","end":"2019-05-13T09:39:21.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":40,"window":{"start":"2019-05-13T09:39:16.000Z","end":"2019-05-13T09:39:20.000Z"},"time":"2019-05-13T09:39:19.818Z"}
{"count":19,"window":{"start":"2019-05-13T09:39:19.000Z","end":"2019-05-13T09:39:23.000Z"},"time":"2019-05-13T09:39:19.818Z"}
{"count":19,"window":{"start":"2019-05-13T09:39:18.000Z","end":"2019-05-13T09:39:22.000Z"},"time":"2019-05-13T09:39:19.818Z"}
{"count":40,"window":{"start":"2019-05-13T09:39:17.000Z","end":"2019-05-13T09:39:21.000Z"},"time":"2019-05-13T09:39:19.818Z"}
{"count":37,"window":{"start":"2019-05-13T09:39:19.000Z","end":"2019-05-13T09:39:23.000Z"},"time":"2019-05-13T09:39:21.939Z"}
{"count":18,"window":{"start":"2019-05-13T09:39:21.000Z","end":"2019-05-13T09:39:25.000Z"},"time":"2019-05-13T09:39:21.939Z"}
I would like this:
{"count":47,"window":{"start":"2019-05-13T09:39:12.000Z","end":"2019-05-13T09:39:16.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":21,"window":{"start":"2019-05-13T09:39:13.000Z","end":"2019-05-13T09:39:17.000Z"},"time":"2019-05-13T09:39:15.026Z"}
{"count":42,"window":{"start":"2019-05-13T09:39:14.000Z","end":"2019-05-13T09:39:18.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":42,"window":{"start":"2019-05-13T09:39:15.000Z","end":"2019-05-13T09:39:19.000Z"},"time":"2019-05-13T09:39:17.460Z"}
{"count":40,"window":{"start":"2019-05-13T09:39:16.000Z","end":"2019-05-13T09:39:20.000Z"},"time":"2019-05-13T09:39:19.818Z"}
{"count":40,"window":{"start":"2019-05-13T09:39:17.000Z","end":"2019-05-13T09:39:21.000Z"},"time":"2019-05-13T09:39:19.818Z"}
The expected ouput wait for the window to be closed based on comparaison between the end timestamp and the current time.
I an new to pyspark. I have written a pyspark program to read kafka stream using window operation. I am publishing the below message to kafka every second with different sources and temperatures along with the timestamp.
{"temperature":34,"time":"2019-04-17 12:53:02","source":"1010101"}
{"temperature":29,"time":"2019-04-17 12:53:03","source":"1010101"}
{"temperature":28,"time":"2019-04-17 12:53:04","source":"1010101"}
{"temperature":34,"time":"2019-04-17 12:53:05","source":"1010101"}
{"temperature":45,"time":"2019-04-17 12:53:06","source":"1010101"}
{"temperature":34,"time":"2019-04-17 12:53:07","source":"1010102"}
{"temperature":29,"time":"2019-04-17 12:53:08","source":"1010102"}
{"temperature":28,"time":"2019-04-17 12:53:09","source":"1010102"}
{"temperature":34,"time":"2019-04-17 12:53:10","source":"1010102"}
{"temperature":45,"time":"2019-04-17 12:53:11","source":"1010102"}
How do I check if n consecutive temperature records for a source crosses threshold limit (<30 and >40) and then publish the alerts to Kafka. Also please let me know if the below program is efficient to read the kafka stream or require any changes?
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, FloatType, TimestampType
from pyspark.sql.functions import avg, window, from_json, from_unixtime, unix_timestamp
import uuid
schema = StructType([
StructField("source", StringType(), True),
StructField("temperature", FloatType(), True),
StructField("time", StringType(), True)
])
spark = SparkSession \
.builder.master("local[8]") \
.appName("test-app") \
.getOrCreate()
spark.conf.set("spark.sql.shuffle.partitions", 5)
df1 = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "test") \
.load() \
.selectExpr("CAST(value AS STRING)")
df2 = df1.select(from_json("value", schema).alias(
"sensors")).select("sensors.*")
df3 = df2.select(df2.source, df2.temperature, from_unixtime(
unix_timestamp(df2.time, 'yyyy-MM-dd HH:mm:ss')).alias('time'))
df4 = df3.groupBy(window(df3.time, "2 minutes", "1 minutes"),
df3.source).agg(avg("temperature"))
query1 = df4.writeStream \
.outputMode("complete") \
.format("console") \
.option("checkpointLocation", "/tmp/temporary-" + str(uuid.uuid4())) \
.start()
query1.awaitTermination()
I am writing a Spark Structured Streaming program. I need to create an additional column with the lag difference.
To reproduce my issue, I provide the code snippet. This code consumes data.json file stored in data folder:
[
{"id": 77,"type": "person","timestamp": 1532609003},
{"id": 77,"type": "person","timestamp": 1532609005},
{"id": 78,"type": "crane","timestamp": 1532609005}
]
Code:
from pyspark.sql import SparkSession
import pyspark.sql.functions as func
from pyspark.sql.window import Window
from pyspark.sql.types import *
spark = SparkSession \
.builder \
.appName("Test") \
.master("local[2]") \
.getOrCreate()
schema = StructType([
StructField("id", IntegerType()),
StructField("type", StringType()),
StructField("timestamp", LongType())
])
ds = spark \
.readStream \
.format("json") \
.schema(schema) \
.load("data/")
diff_window = Window.partitionBy("id").orderBy("timestamp")
ds = ds.withColumn("prev_timestamp", func.lag(ds.timestamp).over(diff_window))
query = ds \
.writeStream \
.format('console') \
.start()
query.awaitTermination()
I get this error:
pyspark.sql.utils.AnalysisException: u'Non-time-based windows are not
supported on streaming DataFrames/Datasets;;\nWindow
[lag(timestamp#71L, 1, null) windowspecdefinition(host_id#68,
timestamp#71L ASC NULLS FIRST, ROWS BETWEEN 1 PRECEDING AND 1
PRECEDING) AS prev_timestamp#129L]
pyspark.sql.utils.AnalysisException: u'Non-time-based windows are not supported on streaming DataFrames/Datasets
Meaning that your window should be based on a timestamp column. So it you have a data point for each second, and you make a 30s window with a stride of 10s, your resultant window would create a new window column, with start and end columns which will contain timestamps with a difference of 30s.
You should use the window in this way:
words = words.withColumn('date_time', F.col('date_time').cast('timestamp'))
w = F.window('date_time', '30 seconds', '10 seconds')
words = words \
.withWatermark('date_format', '1 minutes') \
.groupBy(w).agg(F.mean('value'))