Fastest way to determine if two points are closest to one another - python-3.x

My problems consists of the following: I am given two pairs angles (in spherical coordinates) which consists of two parts--an azimuth and a colatitude angle. If we extend both angles (thereby increasing their respective radii) infinitely to make a long line pointing in the direction given by the pair of angles, then my goal is to determine
if they intersect or extremely close to one another and
where exactly they intersect.
Currently, I have tried several methods:
The most obvious one is to iteratively compare each radii until there is either a match or a small enough distance between the two. (When I say compare each radii, I am referring to converting each spherical coordinate into Cartesian and then finding the euclidean distance between the two). However, this runtime is $O(n^{2})$, which is extremely slow if I am trying to scale this program
The second most obvious method is to use the optimization package to find this distance. Unfortunately, I cannot the optimization package iteratively and after one instance the optimization algorithm repeats the same answer, which is not useful.
The least obvious method is to directly calculate (using calculus) the exact radii from the angles. While this is fast method, it is not extremely accurate.
Note: while it might seem simple that the intersection is always at the zero-origin (0,0,0), this is not ALWAYS the case. Some points never intersect.
Code for Method (1)
def match1(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centroid_1,centroid_2 ):
# Constants: tolerance factor and extremely large distance
tol = 3e-2
prevDist = 99999999
# Initialize a list of radii to loop through
# Checking iteravely for a solution
for r1 in list(np.arange(0,5,tol)):
for r2 in list(np.arange(0,5,tol)):
# Get the estimates
estimate_1 = np.array(spher2cart(r1,azimuth_recon_1,colatitude_recon_1)) + np.array(centroid_1)
estimate_2 = np.array(spher2cart(r2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2)
# Calculate the euclidean distance between them
dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])
# Compare the distance to this tolerance
if dist < tol:
if dist == 0:
return estimate_1, [], True
else:
return estimate_1, estimate_2, False
## If the distance is too big break out of the loop
if dist > prevDist:
prevDist = 9999999
break
prevDist = dist
return [], [], False
Code for Method (3)
def match2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centriod_1,centroid_2):
# Set a Tolerance factor
tol = 3e-2
def calculate_radius_2(azimuth_1,colatitude_1,azimuth_2,colatitude_2):
"""Return radius 2 using both pairs of angles (azimuth and colatitude). Equation is provided in the document"""
return 1/((1-(math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
+math.cos(azimuth_1)*math.cos(azimuth_2))**2)
def calculate_radius_1(radius_2,azimuth_1,colatitude_1,azimuth_2,colatitude_2):
"""Returns radius 1 using both pairs of angles (azimuth and colatitude) and radius 2.
Equation provided in document"""
return (radius_2)*((math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
+math.cos(azimuth_1)*math.cos(azimuth_2))
# Compute radius 2
radius_2 = calculate_radius_2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)
#Compute radius 1
radius_1 = calculate_radius_1(radius_2,azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)
# Get the estimates
estimate_1 = np.array(spher2cart(radius_1,azimuth_recon_1,colatitude_recon_1))+ np.array(centroid_1)
estimate_2 = np.array(spher2cart(radius_2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2)
# Calculate the euclidean distance between them
dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])
# Compare the distance to this tolerance
if dist < tol:
if dist == 0:
return estimate_1, [], True
else:
return estimate_1, estimate_2, False
else:
return [], [], False
My question is two-fold:
Is there a faster and more accurate way to find the radii for both
points?
If so, how do I do it?
EDIT: I am thinking about just creating two numpy arrays of the two radii and then comparing them via numpy boolean logic. However, I would still be comparing them iteratively. Is there is a faster way to perform this comparison?

Use a kd-tree for such situations. It will easily look up the minimal distance:
def match(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centriod_1,centroid_2):
cartesian_1 = np.array([np.cos(azimuth_recon_1)*np.sin(colatitude_recon_1),np.sin(azimuth_recon_1)*np.sin(colatitude_recon_1),np.cos(colatitude_recon_1)]) #[np.newaxis,:]
cartesian_2 = np.array([np.cos(azimuth_recon_2)*np.sin(colatitude_recon_2),np.sin(azimuth_recon_2)*np.sin(colatitude_recon_2),np.cos(colatitude_recon_2)]) #[np.newaxis,:]
# Re-center them via adding the centroid
estimate_1 = r1*cartesian_1.T + np.array(centroid_1)[np.newaxis,:]
estimate_2 = r2*cartesian_2.T + np.array(centroid_2)[np.newaxis,:]
# Add them to the output list
n = estimate_1.shape[0]
outputs_list_1.append(estimate_1)
outputs_list_2.append(estimate_2)
# Reshape them so that they are in proper format
a = np.array(outputs_list_1).reshape(len(two_pair_mic_list)*n,3)
b = np.array(outputs_list_2).reshape(len(two_pair_mic_list)*n,3)
# Get the difference
c = a - b
# Put into a KDtree
tree = spatial.KDTree(c)
# Find the indices where the radius (distance between the points) is 3e-3 or less
indices = tree.query_ball_tree(3e-3)
This will output a list of the indices where the distance is 3e-3 or less. Now all you will have to do is use the list of indices with the estimate list to find the exact points. And there you have it, this will save you a lot of time and space!

Related

How to match a geometric template of 2D boxes to fit another set of 2D boxes

I'm trying to find a match between a set of 2D boxes with coordinates (A) (from a template with known sizes and distances between boxes) to another set of 2D boxes with coordinates (B) (which may contain more boxes than A). They should match in terms of each box from A corresponds to a single Box in B. The boxes in A together form a "stamp" which is assymmetrical in atleast one dimension.
Illustration of problem
explanation: "Stanz" in the illustration is a box from set A.
One might even think of the Set A as only 2D points (the centerpoint of the box) to make it simpler.
The end result will be to know which A box corresponds to which B box.
I can only think of very specific ways of doing this, tailored to a specific layout of boxes, is there any known generic ways of dealing with this forms of matching/search problems and what are they called?
Edit: Possible solution
I have come up with one possible solution, looking for all the possible rotations at each possible B center position for a single box from set A. Here all of the points in A would be rotated and compared against the distance to B centers. Not sure if this is a good way.
Looking for the possible rotations at each B centerpoint- solution
In your example, the transformation between the template and its presence in B can be entirely defined (actually, over-defined) by two matching points.
So here's a simple approach which is kind of performant. First, put all the points in B into a kD-tree. Now, pick a canonical "first" point in A, and hypothesize matching it to each of the points in B. To check whether it matches a particular point in B, pick a canonical "second" point in A and measure its distance to the "first" point. Then, use a standard kD proximity-bounding query to find all the points in B which are roughly that distance from your hypothesized matched "first" point in B. For each of those, determine the transformation between A and B, and for each of the other points in A, determine whether there's a point in A at roughly the right place (again, using the kD-tree), early-outing with the first unmatched point.
The worst-case performance there can get quite bad with pathological cases (O(n^3 log n), I think) but in general I would expect roughly O(n log n) for well-behaved data with a low threshold. Note that the thresholding is a bit rough-and-ready, and the results can depend on your choice of "first" and "second" points.
This is more of an idea than an answer, but it's too long for a comment. I asked some additional questions in a comment above, but the answers may not be particular relevant, so I'll go ahead and offer some thoughts in the meantime.
As you may know, point matching is its own problem domain, and if you search for 'point matching algorithm', you'll find various articles, papers, and other resources. It seems though that an ad hoc solution might be appropriate here (one that's simpler than more generic algorithms that are available).
I'll assume that the input point set can only be rotated, and not also flipped. If this idea were to work though, it should also work with flipping - you'd just have to run the algorithm separately for each flipped configuration.
In your example image, you've matched a point from set A with a point from set B so that they're coincident. Call this shared point the 'anchor' point. You'd need to do this for every combination of a point from set A and a point from set B until you found a match or exhausted the possibilities. The problem then is to determine if a match can be made given one of these matched point pairs.
It seems that for a given anchor point, a necessary but not sufficient condition for a match is that a point from set A and a point from set B can be found that are approximately the same distance from the anchor point. (What 'approximately' means would depend on the input, and would need to be tuned appropriately given that you're using integers.) This condition is met in your example image in that the center point of each point set is (approximately) the same distance from the anchor point. (Note that there could be multiple pairs of points that meet this condition, in which case you'd have to examine each such pair in turn.)
Once you have such a pair - the center points in your example - you can use some simple trigonometry and linear algebra to rotate set A so that the points in the pair coincide, after which the two point sets are locked together at two points and not just one. In your image that would involve rotating set A about 135 degrees clockwise. Then you check to see if every point in set B has a point in set A with which it's coincident, to within some threshold. If so, you have a match.
In your example, this fails of course, because the rotation is not actually a match. Eventually though, if there's a match, you'll find the anchor point pair for which the test succeeds.
I realize this would be easier to explain with some diagrams, but I'm afraid this written explanation will have to suffice for the moment. I'm not positive this would work - it's just an idea. And maybe a more generic algorithm would be preferable. But, if this did work, it might have the advantage of being fairly straightforward to implement.
[Edit: Perhaps I should add that this is similar to your solution, except for the additional step to allow for only testing a subset of the possible rotations.]
[Edit: I think a further refinement may be possible here. If, after choosing an anchor point, matching is possible via rotation, it should be the case that for every point p in B there's a point in A that's (approximately) the same distance from the anchor point as p is. Again, it's a necessary but not sufficient condition, but it allows you to quickly eliminate cases where a match isn't possible via rotation.]
Below follows a finished solution in python without kD-tree and without early outing candidates. A better way is to do the implementation yourself according to Sneftel but if you need anything quick and with a plot this might be useful.
Plot shows the different steps, starts off with just the template as a collection of connected lines. Then it is translated to a point in B where the distances between A and B points fits the best. Finally it is rotated.
In this example it was important to also match up which of the template positions was matched to which boundingbox position, so its an extra step in the end. There might be some deviations in the code compared to the outline above.
import numpy as np
import random
import math
import matplotlib.pyplot as plt
def to_polar(pos_array):
x = pos_array[:, 0]
y = pos_array[:, 1]
length = np.sqrt(x ** 2 + y ** 2)
t = np.arctan2(y, x)
zip_list = list(zip(length, t))
array_polar = np.array(zip_list)
return array_polar
def to_cartesian(pos):
# first element radius
# second is angle(theta)
# Converting polar to cartesian coordinates
radius = pos[0]
theta = pos[1]
x = radius * math.cos(theta)
y = radius * math.sin(theta)
return x,y
def calculate_distance_points(p1,p2):
return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
def find_closest_point_inx(point, neighbour_set):
shortest_dist = None
closest_index = -1
# Find the point in the secondary array that is the closest
for index,curr_neighbour in enumerate(neighbour_set):
distance = calculate_distance_points(point, curr_neighbour)
if shortest_dist is None or distance < shortest_dist:
shortest_dist = distance
closest_index = index
return closest_index
# Find the sum of distances between each point in primary to the closest one in secondary
def calculate_agg_distance_arrs(primary,secondary):
total_distance = 0
for point in primary:
closest_inx = find_closest_point_inx(point, secondary)
dist = calculate_distance_points(point, secondary[closest_inx])
total_distance += dist
return total_distance
# returns a set of <primary_index,neighbour_index>
def pair_neighbours_by_distance(primary_set, neighbour_set, distance_limit):
pairs = {}
for num, point in enumerate(primary_set):
closest_inx = find_closest_point_inx(point, neighbour_set)
if calculate_distance_points(neighbour_set[closest_inx], point) > distance_limit:
closest_inx = None
pairs[num]=closest_inx
return pairs
def rotate_array(array, angle,rot_origin=None):
if rot_origin is not None:
array = np.subtract(array,rot_origin)
# clockwise rotation
theta = np.radians(angle)
c, s = np.cos(theta), np.sin(theta)
R = np.array(((c, -s), (s, c)))
rotated = np.matmul(array, R)
if rot_origin is not None:
rotated = np.add(rotated,rot_origin)
return rotated
# Finds out a point in B_set and a rotation where the points in SetA have the best alignment towards SetB.
def find_stamp_rotation(A_set, B_set):
# Step 1
anchor_point_A = A_set[0]
# Step 2. Convert all points to polar coordinates with anchor as origin
A_anchor_origin = A_set - anchor_point_A
anchor_A_polar = to_polar(A_anchor_origin)
print(anchor_A_polar)
# Step 3 for each point in B
score_tuples = []
for num_anchor, B_anchor_point_try in enumerate(B_set):
# Step 3.1
B_origin_rel_point = B_set-B_anchor_point_try
B_polar_rp_origin = to_polar(B_origin_rel_point)
# Step 3.3 select arbitrary point q from Ap
point_Aq = anchor_A_polar[1]
# Step 3.4 test each rotation, where pointAq is rotated to each B-point (except the B anchor point)
for try_rot_point_B in [B_rot_point for num_rot, B_rot_point in enumerate(B_polar_rp_origin) if num_rot != num_anchor]:
# positive rotation is clockwise
# Step 4.1 Rotate Ap by the angle between q and n
angle_to_try = try_rot_point_B[1]-point_Aq[1]
rot_try_arr = np.copy(anchor_A_polar)
rot_try_arr[:,1]+=angle_to_try
cart_rot_try_arr = [to_cartesian(e) for e in rot_try_arr]
cart_B_rp_origin = [to_cartesian(e) for e in B_polar_rp_origin]
distance_score = calculate_agg_distance_arrs(cart_rot_try_arr, cart_B_rp_origin)
score_tuples.append((B_anchor_point_try,angle_to_try,distance_score))
# Step 4.3
lowest=None
for b_point,angle,distance in score_tuples:
print("point:{} angle(rad):{} distance(sum):{}".format(b_point,360*(angle/(2*math.pi)),distance))
if lowest is None or distance < lowest[2]:
lowest = b_point, 360*angle/(2*math.pi), distance
return lowest
def test_example():
ax = plt.subplot()
ax.grid(True)
plt.title('Fit Template to BBoxes by translation and rotation')
plt.xlim(-20, 20)
plt.ylim(-20, 20)
ax.set_xticks(range(-20,20), minor=True)
ax.set_yticks(range(-20,20), minor=True)
template = np.array([[-10,-10],[-10,10],[0,0],[10,-10],[10,10], [0,20]])
# Test Bboxes are Rotated 40 degree, translated 2,2
rotated = rotate_array(template,40)
rotated = np.subtract(rotated,[2,2])
# Adds some extra bounding boxes as noise
for i in range(8):
rotated = np.append(rotated,[[random.randrange(-20,20), random.randrange(-20,20)]],axis=0)
# Scramble entries in array and return the position change.
rnd_rotated = rotated.copy()
np.random.shuffle(rnd_rotated)
element_positions = []
# After shuffling, looks at which index the "A"-marks has ended up at. For later comparison to see that the algo found the correct answer.
# This is to represent the actual case, where I will get a bunch of unordered bboxes.
rnd_map = {}
indexes_translation = [num2 for num,point in enumerate(rnd_rotated) for num2,point2 in enumerate(rotated) if point[0]==point2[0] and point[1]==point2[1]]
for num,inx in enumerate(indexes_translation):
rnd_map[num]=inx
# algo part 1/3
b_point,angle,_ = find_stamp_rotation(template,rnd_rotated)
# Plot for visualization
legend_list = np.empty((0,2))
leg_template = plt.plot(template[:,0],template[:,1],c='r')
legend_list = np.append(legend_list,[[leg_template[0],'1. template-pattern']],axis=0)
leg_bboxes = plt.scatter(rnd_rotated[:,0],rnd_rotated[:,1],c='b',label="scatter")
legend_list = np.append(legend_list,[[leg_bboxes,'2. bounding boxes']],axis=0)
leg_anchor = plt.scatter(b_point[0],b_point[1],c='y')
legend_list = np.append(legend_list,[[leg_anchor,'3. Discovered bbox anchor point']],axis=0)
# algo part 2/3
# Superimpose A onto B by A[0] to b_point
offset = b_point - template[0]
super_imposed_A = template + offset
# Plot superimposed, but not yet rotated
leg_s_imposed = plt.plot(super_imposed_A[:,0],super_imposed_A[:,1],c='k')
#plt.legend(rubberduckz, "superimposed template on anchor")
legend_list = np.append(legend_list,[[leg_s_imposed[0],'4. Templ superimposed on Bbox']],axis=0)
print("Superimposed A on B by A[0] to {}".format(b_point))
print(super_imposed_A)
# Rotate, now the template should match pattern of bboxes
# algo part 3/4
super_imposed_rotated_A = rotate_array(super_imposed_A,-angle,rot_origin=super_imposed_A[0])
# Show the beautiful match in a last plot
leg_s_imp_rot = plt.plot(super_imposed_rotated_A[:,0],super_imposed_rotated_A[:,1],c='g')
legend_list = np.append(legend_list,[[leg_s_imp_rot[0],'5. final fit']],axis=0)
plt.legend(legend_list[:,0], legend_list[:,1],loc="upper left")
plt.show()
# algo part 4/4
pairs = pair_neighbours_by_distance(super_imposed_rotated_A, rnd_rotated, 10)
print(pairs)
for inx in range(len(pairs)):
bbox_num = pairs[inx]
print("template id:{}".format(inx))
print("bbox#id:{}".format(bbox_num))
#print("original_bbox:{}".format(rnd_map[bbox_num]))
if __name__ == "__main__":
test_example()
Result on actual image with bounding boxes. Here it can be seen that the scaling is incorrect which makes the template a bit off but it will still be able to pair up and thats the desired end-result in my case.

Optimizing Dunn Index calculation?

The Dunn Index is a method of evaluating clustering. A higher value is better. It is calculated as the lowest intercluster distance (ie. the smallest distance between any two cluster centroids) divided by the highest intracluster distance (ie. the largest distance between any two points in any cluster).
I have a code snippet for calculating the Dunn Index:
def dunn_index(pf, cf):
"""
pf -- all data points
cf -- cluster centroids
"""
numerator = inf
for c in cf: # for each cluster
for t in cf: # for each cluster
if t is c: continue # if same cluster, ignore
numerator = min(numerator, distance(t, c)) # find distance between centroids
denominator = 0
for c in cf: # for each cluster
for p in pf: # for each point
if p.get_cluster() is not c: continue # if point not in cluster, ignore
for t in pf: # for each point
if t.get_cluster() is not c: continue # if point not in cluster, ignore
if t is p: continue # if same point, ignore
denominator = max(denominator, distance(t, p))
return numerator/denominator
The problem is this is exceptionally slow: for an example data set consisting of 5000 instances and 15 clusters, the function above needs to perform just over 375 million distance calculations at worst. Realistically it's much lower, but even a best case, where the data is ordered by cluster already, is around 25 million distance calculations. I want to shave time off of it, and I've already tried rectilinear distance vs. euclidean and it's not good.
How can I improve this algorithm?
TLDR: Importantly, the problem is set up in two-dimensions. For large dimensions, these techniques can be ineffective.
In 2D, we can compute the diameter (intracluster distance) of each cluster in O(n log n) time where n is the cluster size using convex hulls. Vectorization is used to speed up remaining operations. There are two possible asymptotic improvements mentioned at the end of the post, contributions welcome ;)
Setup and fake data:
import numpy as np
from scipy import spatial
from matplotlib import pyplot as plt
# set up fake data
np.random.seed(0)
n_centroids = 1000
centroids = np.random.rand(n_centroids, 2)
cluster_sizes = np.random.randint(1, 1000, size=n_centroids)
# labels from 1 to n_centroids inclusive
labels = np.repeat(np.arange(n_centroids), cluster_sizes) + 1
points = np.zeros((cluster_sizes.sum(), 2))
points[:,0] = np.repeat(centroids[:,0], cluster_sizes)
points[:,1] = np.repeat(centroids[:,1], cluster_sizes)
points += 0.05 * np.random.randn(cluster_sizes.sum(), 2)
Looks somewhat like this:
Next, we define a diameter function for computing the largest intracluster distance, based on this approach using the convex hull.
# compute the diameter based on convex hull
def diameter(pts):
# need at least 3 points to construct the convex hull
if pts.shape[0] <= 1:
return 0
if pts.shape[0] == 2:
return ((pts[0] - pts[1])**2).sum()
# two points which are fruthest apart will occur as vertices of the convex hull
hull = spatial.ConvexHull(pts)
candidates = pts[spatial.ConvexHull(pts).vertices]
return spatial.distance_matrix(candidates, candidates).max()
For the Dunn index calculation, I assume that we have already computed the points, the cluster labels and the cluster centroids.
If the number of clusters is large, the following solution based on Pandas may perform well:
import pandas as pd
def dunn_index_pandas(pts, labels, centroids):
# O(k n log(n)) with k clusters and n points; better performance with more even clusters
max_intracluster_dist = pd.DataFrame(pts).groupby(labels).agg(diameter_pandas)[0].max()
# O(k^2) with k clusters; can be reduced to O(k log(k))
# get pairwise distances between centroids
cluster_dmat = spatial.distance_matrix(centroids, centroids)
# fill diagonal with +inf: ignore zero distance to self in "min" computation
np.fill_diagonal(cluster_dmat, np.inf)
min_intercluster_dist = cluster_sizes.min()
return min_intercluster_dist / max_intracluster_dist
Otherwise, we can continue with a pure numpy solution.
def dunn_index(pts, labels, centroids):
# O(k n log(n)) with k clusters and n points; better performance with more even clusters
max_intracluster_dist = max(diameter(pts[labels==i]) for i in np.unique(labels))
# O(k^2) with k clusters; can be reduced to O(k log(k))
# get pairwise distances between centroids
cluster_dmat = spatial.distance_matrix(centroids, centroids)
# fill diagonal with +inf: ignore zero distance to self in "min" computation
np.fill_diagonal(cluster_dmat, np.inf)
min_intercluster_dist = cluster_sizes.min()
return min_intercluster_dist / max_intracluster_dist
%time dunn_index(points, labels, centroids)
# returned value 2.15
# in 2.2 seconds
%time dunn_index_pandas(points, labels, centroids)
# returned 2.15
# in 885 ms
For 1000 clusters with i.i.d. ~U[1,1000] cluster sizes this takes 2.2. seconds on my machine. This number drops to .8 seconds with the Pandas approach for this example (many small clusters).
There are two further optimization opportunities that are relevant when the number of clusters is large:
First, I am computing the minimal intercluster distance with a brute force O(k^2) approach where k is the number of clusters. This can be reduced to O(k log(k)), as discussed here.
Second, max(diameter(pts[labels==i]) for i in np.unique(labels)) requires k passes over an array of size n. With many clusters this can become the bottleneck (as in this example). This is somewhat mitigated with the pandas approach, but I expect that this can be optimized a lot further. For current parameters, roughly one third of compute time is spent outside of computing intercluser of intracluster distances.
It's not about optimizing algorithm itself, but I think one of the following advises can improve performance.
Using multiprocessing's pool of workers.
Extracting python code to c/cpp. Refer to official documentation.
Also there are Performance Tips on the https://www.python.org.

using Geopandas, How to randomly select in each polygon 5 Points by sampling method

I want to select 5 Points in each polygon based on random sampling method. And required 5 points co-ordinates(Lat,Long) in each polygon for identify which crop is grawn.
Any ideas for do this using geopandas?
Many thanks.
My suggestion involves sampling random x and y coordinates within the shape's bounding box and then checking whether the sampled point is actually within the shape. If the sampled point is within the shape then return it, otherwise repeat until a point within the shape is found. For sampling, we can use the uniform distribution, such that all points in the shape have the same probability of being sampled. Here is the function:
from shapely.geometry import Point
def random_point_in_shp(shp):
within = False
while not within:
x = np.random.uniform(shp.bounds[0], shp.bounds[2])
y = np.random.uniform(shp.bounds[1], shp.bounds[3])
within = shp.contains(Point(x, y))
return Point(x,y)
and here's an example how to apply this function to an example GeoDataFrame called geo_df to get 5 random points for each entry:
for num in range(5):
geo_df['Point{}'.format(num)] = geo_df['geometry'].apply(random_point_in_shp)
There might be more efficient ways to do this, but depending on your application the algorithm could be sufficiently fast. With my test file, which contains ~2300 entries, generating five random points for each entry took around 15 seconds on my machine.

Trilateration and nonlienar least squares

I am trying to find user distances from beacon positions using trilateration. I am having a mean squared error function that I am trying to minimize using non-linear least squares but I am not getting correct results. Any help is appreciated. The code is below.
def mse(self, user_pos, positions, distances):
mse = 0.0
for pos, dist in zip(positions, distances):
distance = great_circle((user_pos[0], user_pos[1]), (pos[0], pos[1])).meters
mse += math.pow(distance - dist, 2.0)
return mse/len(positions)
def least_squares_func(self, positions, distances):
# Returns users coordinates
return least_squares(self.mse, [0,0], args=(positions, distances)).x
Starting position in least_squares is [0,0] but after changing it I am not getting much different results.
Input example:
positions = [(5.0, -6.0), (13.0, -15.0), (21.0, -3.0)]
distances = [8.06, 13.97, 23.32]
great_circle is used for GPS where we deal with an oblate spheroid for beacons you must used simple Euclidean metric to calculate the distance between the user and each beacons.

What is the fastest way to find the center of an irregular convex polygon?

I'm interested in a fast way to calculate the rotation-independent center of a simple, convex, (non-intersecting) 2D polygon.
The example below (on the left) shows the mean center (sum of all points divided by the total), and the desired result on the right.
Some options I've already considered.
bound-box center (depends on rotation, and ignores points based on their relation to the axis).
Straight skeleton - too slow to calculate.
I've found a way which works reasonably well, (weight the points by the edge-lengths) - but this means a square-root call for every edge - which I'd like to avoid.(Will post as an answer, even though I'm not entirely satisfied with it).
Note, I'm aware of this questions similarity with:What is the fastest way to find the "visual" center of an irregularly shaped polygon?
However having to handle convex polygons increases the complexity of the problem significantly.
The points of the polygon can be weighted by their edge length which compensates for un-even point distribution.
This works for convex polygons too but in that case the center point isn't guaranteed to be inside the polygon.
Psudo-code:
def poly_center(poly):
sum_center = (0, 0)
sum_weight = 0.0
for point in poly:
weight = ((point - point.next).length +
(point - point.prev).length)
sum_center += point * weight
sum_weight += weight
return sum_center / sum_weight
Note, we can pre-calculate all edge lengths to halve the number of length calculations, or reuse the previous edge-length for half+1 length calculations. This is just written as an example to show the logic.
Including this answer for completeness since its the best method I've found so far.
There is no much better way than the accumulation of coordinates weighted by the edge length, which indeed takes N square roots.
If you accept an approximation, it is possible to skip some of the vertices by curve simplification, as follows:
decide of a deviation tolerance;
start from vertex 0 and jump to vertex M (say M=N/2);
check if the deviation along the polyline from 0 to M exceeds the tolerance (for this, compute the height of the triangle formed by the vertices 0, M/2, M);
if the deviation is exceeded, repeat recursively with 0, M/4, M/2 and M/2, 3M/4, M;
if the deviation is not exceeded, assume that the shape is straight between 0 and M.
continue until the end of the polygon.
Where the points are dense (like the left edge on your example), you should get some speedup.
I think its easiest to do something with the center of masses of the delaunay triangulation of the polygon points. i.e.
def _centroid_poly(poly):
T = spatial.Delaunay(poly).simplices
n = T.shape[0]
W = np.zeros(n)
C = 0
for m in range(n):
sp = poly[T[m,:],:]
W[m] = spatial.ConvexHull(sp).volume
C += W[m] +np.mean(sp, axis = 0)
return C / np.sum(W)
This works well for me!

Resources