Automatic subdir and file creation in C [duplicate] - linux

I want an easy way to create multiple directories in C++/Linux.
For example I want to save a file lola.file in the directory:
/tmp/a/b/c
but if the directories are not there I want them to be created automagically. A working example would be perfect.

Easy with Boost.Filesystem: create_directories
#include <boost/filesystem.hpp>
//...
boost::filesystem::create_directories("/tmp/a/b/c");
Returns: true if a new directory was created, otherwise false.

With C++17 or later, there's the standard header <filesystem> with
function
std::filesystem::create_directories
which should be used in modern C++ programs.
The C++ standard functions do not have the POSIX-specific explicit
permissions (mode) argument, though.
However, here's a C function that can be compiled with C++ compilers.
/*
#(#)File: mkpath.c
#(#)Purpose: Create all directories in path
#(#)Author: J Leffler
#(#)Copyright: (C) JLSS 1990-2020
#(#)Derivation: mkpath.c 1.16 2020/06/19 15:08:10
*/
/*TABSTOP=4*/
#include "posixver.h"
#include "mkpath.h"
#include "emalloc.h"
#include <errno.h>
#include <string.h>
/* "sysstat.h" == <sys/stat.h> with fixup for (old) Windows - inc mode_t */
#include "sysstat.h"
typedef struct stat Stat;
static int do_mkdir(const char *path, mode_t mode)
{
Stat st;
int status = 0;
if (stat(path, &st) != 0)
{
/* Directory does not exist. EEXIST for race condition */
if (mkdir(path, mode) != 0 && errno != EEXIST)
status = -1;
}
else if (!S_ISDIR(st.st_mode))
{
errno = ENOTDIR;
status = -1;
}
return(status);
}
/**
** mkpath - ensure all directories in path exist
** Algorithm takes the pessimistic view and works top-down to ensure
** each directory in path exists, rather than optimistically creating
** the last element and working backwards.
*/
int mkpath(const char *path, mode_t mode)
{
char *pp;
char *sp;
int status;
char *copypath = STRDUP(path);
status = 0;
pp = copypath;
while (status == 0 && (sp = strchr(pp, '/')) != 0)
{
if (sp != pp)
{
/* Neither root nor double slash in path */
*sp = '\0';
status = do_mkdir(copypath, mode);
*sp = '/';
}
pp = sp + 1;
}
if (status == 0)
status = do_mkdir(path, mode);
FREE(copypath);
return (status);
}
#ifdef TEST
#include <stdio.h>
#include <unistd.h>
/*
** Stress test with parallel running of mkpath() function.
** Before the EEXIST test, code would fail.
** With the EEXIST test, code does not fail.
**
** Test shell script
** PREFIX=mkpath.$$
** NAME=./$PREFIX/sa/32/ad/13/23/13/12/13/sd/ds/ww/qq/ss/dd/zz/xx/dd/rr/ff/ff/ss/ss/ss/ss/ss/ss/ss/ss
** : ${MKPATH:=mkpath}
** ./$MKPATH $NAME &
** [...repeat a dozen times or so...]
** ./$MKPATH $NAME &
** wait
** rm -fr ./$PREFIX/
*/
int main(int argc, char **argv)
{
int i;
for (i = 1; i < argc; i++)
{
for (int j = 0; j < 20; j++)
{
if (fork() == 0)
{
int rc = mkpath(argv[i], 0777);
if (rc != 0)
fprintf(stderr, "%d: failed to create (%d: %s): %s\n",
(int)getpid(), errno, strerror(errno), argv[i]);
exit(rc == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}
}
int status;
int fail = 0;
while (wait(&status) != -1)
{
if (WEXITSTATUS(status) != 0)
fail = 1;
}
if (fail == 0)
printf("created: %s\n", argv[i]);
}
return(0);
}
#endif /* TEST */
The macros STRDUP() and FREE() are error-checking versions of
strdup() and free(), declared in emalloc.h (and implemented in
emalloc.c and estrdup.c).
The "sysstat.h" header deals with broken versions of <sys/stat.h>
and can be replaced by <sys/stat.h> on modern Unix systems (but there
were many issues back in 1990).
And "mkpath.h" declares mkpath().
The change between v1.12 (original version of the answer) and v1.13
(amended version of the answer) was the test for EEXIST in
do_mkdir().
This was pointed out as necessary by
Switch — thank
you, Switch.
The test code has been upgraded and reproduced the problem on a MacBook
Pro (2.3GHz Intel Core i7, running Mac OS X 10.7.4), and suggests that
the problem is fixed in the revision (but testing can only show the
presence of bugs, never their absence).
The code shown is now v1.16; there have been cosmetic or administrative
changes made since v1.13 (such as use mkpath.h instead of jlss.h and
include <unistd.h> unconditionally in the test code only).
It's reasonable to argue that "sysstat.h" should be replaced by
<sys/stat.h> unless you have an unusually recalcitrant system.
(You are hereby given permission to use this code for any purpose with attribution.)
This code is available in my SOQ
(Stack Overflow Questions) repository on GitHub as files mkpath.c and
mkpath.h (etc.) in the
src/so-0067-5039
sub-directory.

system("mkdir -p /tmp/a/b/c")
is the shortest way I can think of (in terms of the length of code, not necessarily execution time).
It's not cross-platform but will work under Linux.

Here is my example of code (it works for both Windows and Linux):
#include <iostream>
#include <string>
#include <sys/stat.h> // stat
#include <errno.h> // errno, ENOENT, EEXIST
#if defined(_WIN32)
#include <direct.h> // _mkdir
#endif
bool isDirExist(const std::string& path)
{
#if defined(_WIN32)
struct _stat info;
if (_stat(path.c_str(), &info) != 0)
{
return false;
}
return (info.st_mode & _S_IFDIR) != 0;
#else
struct stat info;
if (stat(path.c_str(), &info) != 0)
{
return false;
}
return (info.st_mode & S_IFDIR) != 0;
#endif
}
bool makePath(const std::string& path)
{
#if defined(_WIN32)
int ret = _mkdir(path.c_str());
#else
mode_t mode = 0755;
int ret = mkdir(path.c_str(), mode);
#endif
if (ret == 0)
return true;
switch (errno)
{
case ENOENT:
// parent didn't exist, try to create it
{
int pos = path.find_last_of('/');
if (pos == std::string::npos)
#if defined(_WIN32)
pos = path.find_last_of('\\');
if (pos == std::string::npos)
#endif
return false;
if (!makePath( path.substr(0, pos) ))
return false;
}
// now, try to create again
#if defined(_WIN32)
return 0 == _mkdir(path.c_str());
#else
return 0 == mkdir(path.c_str(), mode);
#endif
case EEXIST:
// done!
return isDirExist(path);
default:
return false;
}
}
int main(int argc, char* ARGV[])
{
for (int i=1; i<argc; i++)
{
std::cout << "creating " << ARGV[i] << " ... " << (makePath(ARGV[i]) ? "OK" : "failed") << std::endl;
}
return 0;
}
Usage:
$ makePath 1/2 folderA/folderB/folderC
creating 1/2 ... OK
creating folderA/folderB/folderC ... OK

#include <sys/types.h>
#include <sys/stat.h>
int status;
...
status = mkdir("/tmp/a/b/c", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
From here. You may have to do separate mkdirs for /tmp, /tmp/a, /tmp/a/b/ and then /tmp/a/b/c because there isn't an equivalent of the -p flag in the C api. Be sure and ignore the EEXISTS errno while you're doing the upper level ones.

It should be noted that starting from C++17 filesystem interface is part of the standard library. This means that one can have following to create directories:
#include <filesystem>
std::filesystem::create_directories("/a/b/c/d")
More info here: https://en.cppreference.com/w/cpp/filesystem/create_directory
Additionally, with gcc, one needs to "-std=c++17" to CFLAGS. And "-lstdc++fs" to LDLIBS. The latter potentially is not going to be required in the future.

This is similar to the previous but works forward through the string instead of recursively backwards. Leaves errno with the right value for last failure. If there's a leading slash, there's an extra time through the loop which could have been avoided via one find_first_of() outside the loop or by detecting the leading / and setting pre to 1. The efficiency is the same whether we get set up by a first loop or a pre loop call, and the complexity would be (slightly) higher when using the pre-loop call.
#include <iostream>
#include <string>
#include <sys/stat.h>
int
mkpath(std::string s,mode_t mode)
{
size_t pos=0;
std::string dir;
int mdret;
if(s[s.size()-1]!='/'){
// force trailing / so we can handle everything in loop
s+='/';
}
while((pos=s.find_first_of('/',pos))!=std::string::npos){
dir=s.substr(0,pos++);
if(dir.size()==0) continue; // if leading / first time is 0 length
if((mdret=mkdir(dir.c_str(),mode)) && errno!=EEXIST){
return mdret;
}
}
return mdret;
}
int main()
{
int mkdirretval;
mkdirretval=mkpath("./foo/bar",0755);
std::cout << mkdirretval << '\n';
}

You said "C++" but everyone here seems to be thinking "Bash shell."
Check out the source code to gnu mkdir; then you can see how to implement the shell commands in C++.

bool mkpath( std::string path )
{
bool bSuccess = false;
int nRC = ::mkdir( path.c_str(), 0775 );
if( nRC == -1 )
{
switch( errno )
{
case ENOENT:
//parent didn't exist, try to create it
if( mkpath( path.substr(0, path.find_last_of('/')) ) )
//Now, try to create again.
bSuccess = 0 == ::mkdir( path.c_str(), 0775 );
else
bSuccess = false;
break;
case EEXIST:
//Done!
bSuccess = true;
break;
default:
bSuccess = false;
break;
}
}
else
bSuccess = true;
return bSuccess;
}

So I need mkdirp() today, and found the solutions on this page overly complicated.
Hence I wrote a fairly short snippet, that easily be copied in for others who
stumble upon this thread an wonder why we need so many lines of code.
mkdirp.h
#ifndef MKDIRP_H
#define MKDIRP_H
#include <sys/stat.h>
#define DEFAULT_MODE S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH
/** Utility function to create directory tree */
bool mkdirp(const char* path, mode_t mode = DEFAULT_MODE);
#endif // MKDIRP_H
mkdirp.cpp
#include <errno.h>
bool mkdirp(const char* path, mode_t mode) {
// const cast for hack
char* p = const_cast<char*>(path);
// Do mkdir for each slash until end of string or error
while (*p != '\0') {
// Skip first character
p++;
// Find first slash or end
while(*p != '\0' && *p != '/') p++;
// Remember value from p
char v = *p;
// Write end of string at p
*p = '\0';
// Create folder from path to '\0' inserted at p
if(mkdir(path, mode) == -1 && errno != EEXIST) {
*p = v;
return false;
}
// Restore path to it's former glory
*p = v;
}
return true;
}
If you don't like const casting and temporarily modifying the string, just do a strdup() and free() it afterwards.

Since this post is ranking high in Google for "Create Directory Tree", I am going to post an answer that will work for Windows — this will work using Win32 API compiled for UNICODE or MBCS. This is ported from Mark's code above.
Since this is Windows we are working with, directory separators are BACK-slashes, not forward slashes. If you would rather have forward slashes, change '\\' to '/'
It will work with:
c:\foo\bar\hello\world
and
c:\foo\bar\hellp\world\
(i.e.: does not need trailing slash, so you don't have to check for it.)
Before saying "Just use SHCreateDirectoryEx() in Windows", note that SHCreateDirectoryEx() is deprecated and could be removed at any time from future versions of Windows.
bool CreateDirectoryTree(LPCTSTR szPathTree, LPSECURITY_ATTRIBUTES lpSecurityAttributes = NULL){
bool bSuccess = false;
const BOOL bCD = CreateDirectory(szPathTree, lpSecurityAttributes);
DWORD dwLastError = 0;
if(!bCD){
dwLastError = GetLastError();
}else{
return true;
}
switch(dwLastError){
case ERROR_ALREADY_EXISTS:
bSuccess = true;
break;
case ERROR_PATH_NOT_FOUND:
{
TCHAR szPrev[MAX_PATH] = {0};
LPCTSTR szLast = _tcsrchr(szPathTree,'\\');
_tcsnccpy(szPrev,szPathTree,(int)(szLast-szPathTree));
if(CreateDirectoryTree(szPrev,lpSecurityAttributes)){
bSuccess = CreateDirectory(szPathTree,lpSecurityAttributes)!=0;
if(!bSuccess){
bSuccess = (GetLastError()==ERROR_ALREADY_EXISTS);
}
}else{
bSuccess = false;
}
}
break;
default:
bSuccess = false;
break;
}
return bSuccess;
}

I know it's an old question but it shows up high on google search results and the answers provided here are not really in C++ or are a bit too complicated.
Please note that in my example createDirTree() is very simple because all the heavy lifting (error checking, path validation) needs to be done by createDir() anyway. Also createDir() should return true if directory already exists or the whole thing won't work.
Here's how I would do that in C++:
#include <iostream>
#include <string>
bool createDir(const std::string dir)
{
std::cout << "Make sure dir is a valid path, it does not exist and create it: "
<< dir << std::endl;
return true;
}
bool createDirTree(const std::string full_path)
{
size_t pos = 0;
bool ret_val = true;
while(ret_val == true && pos != std::string::npos)
{
pos = full_path.find('/', pos + 1);
ret_val = createDir(full_path.substr(0, pos));
}
return ret_val;
}
int main()
{
createDirTree("/tmp/a/b/c");
return 0;
}
Of course createDir() function will be system-specific and there are already enough examples in other answers how to write it for linux, so I decided to skip it.

So many approaches has been described here but most of them need hard coding of your path into your code.
There is an easy solution for that problem, using QDir and QFileInfo, two classes of Qt framework. Since your already in Linux environment it should be easy to use Qt.
QString qStringFileName("path/to/the/file/that/dont/exist.txt");
QDir dir = QFileInfo(qStringFileName).dir();
if(!dir.exists()) {
dir.mkpath(dir.path());
}
Make sure you have write access to that Path.

If dir does not exist, create it:
boost::filesystem::create_directories(boost::filesystem::path(output_file).parent_path().string().c_str());

Here's C/C++ recursive function that makes use of dirname() to traverse bottom-up the directory tree. It will stop as soon as it finds an existing ancestor.
#include <libgen.h>
#include <string.h>
int create_dir_tree_recursive(const char *path, const mode_t mode)
{
if (strcmp(path, "/") == 0) // No need of checking if we are at root.
return 0;
// Check whether this dir exists or not.
struct stat st;
if (stat(path, &st) != 0 || !S_ISDIR(st.st_mode))
{
// Check and create parent dir tree first.
char *path2 = strdup(path);
char *parent_dir_path = dirname(path2);
if (create_dir_tree_recursive(parent_dir_path, mode) == -1)
return -1;
// Create this dir.
if (mkdir(path, mode) == -1)
return -1;
}
return 0;
}

mkdir -p /dir/to/the/file
touch /dir/to/the/file/thefile.ending

If you don't have C++17 yet and look for a platform agnostic solution, use ghc::filesystem. The header-ony code is compatible to C++17 (in fact a backport) and easy to migrate later on.

The others got you the right answer, but I thought I'd demonstrate another neat thing you can do:
mkdir -p /tmp/a/{b,c}/d
Will create the following paths:
/tmp/a/b/d
/tmp/a/c/d
The braces allow you to create multiple directories at once on the same level of the hierarchy, whereas the -p option means "create parent directories as needed".

Related

Named Pipe, Communication between 2 children

I have a problem with my code. I want to make communication between 2 children process. One of them is a server, which opens a file and sends each letter to the second process. The second process is counting letters and it should make a new file and save results. I have problems with the last step because the first process gonna finish faster than the second, what causes the end of the program. I have no idea how fix it. Looking for some tips :).
Here you got result.
My code:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
//stale
#define FIFO "my_fifo"
#define SIZE 26
//zmienne globalne
int desk; //deskryptor pliku
int tab[SIZE];
//prototypy funkcji
void parentKillAll();
void server(FILE * file);
void client();
void cleanUp(FILE * file);
int checkEntryData(int argc, char *argv);
void replaceTabWithZero(int * tab);
void countLetters(int * tab, char ch);
void saveResults(int * tab, char *title);
void showTab(int * tab);
int main(int argc, char *argv[]) {
if (!checkEntryData(argc, argv[1]))
return 1;
replaceTabWithZero(tab);
FILE *file = fopen(argv[1], "r");
umask(0);
mkfifo(FIFO, 0666);
if (file) {
if (fork() == 0) {
server(file);
exit(0);
} else if (fork() == 0) {
client();
saveResults(tab, strcat(argv[1], "Result"));
showTab(tab);
exit(0);
} else {
cleanUp(file);
parentKillAll();
}
} else {
perror("Error");
}
return 0;
}
void parentKillAll() {
sleep(1);
kill(0, SIGKILL);
exit(0);
}
void server(FILE * file) {
char ch;
while ((ch = fgetc(file)) != EOF) {
desk = open(FIFO, O_WRONLY);
write(desk, &ch, 1);
}
}
void client() {
char ch;
while (1) {
desk = open(FIFO, O_RDONLY);
read(desk, &ch, 1);
countLetters(tab, ch);
printf("%c", ch);
}
}
void cleanUp(FILE *file) {
wait(0);
fclose(file);
close(desk);
}
int checkEntryData(int argc, char *argv) {
if (argc < 2) {
fprintf(stderr, "Nie poprawna ilosc argumentow\n");
return 0;
}
if (access(argv, F_OK)) {
fprintf(stderr, "Podany plik \'%s\' nie istnieje\n", argv);
return 0;
}
if (access(argv, R_OK)) {
fprintf(stderr, "Brak uprawnien do odczytu pliku \'%s\'\n", argv);
return 0;
}
return 1;
}
void replaceTabWithZero(int * tab) {
for (int i = 0; i < SIZE; i++)
tab[i] = 0;
}
void countLetters(int *tab, char ch) {
int chVal = ch;
if (chVal > 92)
chVal -= 32;
if (chVal > 64 && chVal < 91)
tab[chVal-65] += 1;
}
void saveResults(int *tab, char * title) {
FILE *plik = fopen(title, "w");
if (plik) {
for (int i = 0; i < SIZE; i++)
fprintf(plik, "%c - %d\n", (i+97), tab[i]);
} else {
perror("Error");
}
fclose(plik);
}
void showTab(int * tab) {
for (int i = 0; i < SIZE; i++)
printf("\n%d", tab[i]);
}
The real problem is that the client process can never finish, because it runs an infinite while(1) loop without any exit conditions.
You should rewrite it so that it exits after reading all available data:
void client() {
char ch;
// Open the fifo only once, instead of once per character
desk = open(FIFO, O_RDONLY);
// Loop until there is no more data to read
while(read(desk, &ch, 1) > 0) {
countLetters(tab, ch);
printf("%c", ch);
}
}
This is technically sufficient to make it work, but you should also look into a series of other issues:
You should have two wait(0) calls so that you wait for both processes, and you shouldn't try to kill anything.
The server process should only be opening the fifo once, not once per character.
You should be comparing fgetc output to EOF before forcing the value into a char. Since you do it after, running your program on a ISO-8859-1 terminal will cause it to confuse EOF and the letter ÿ
You are using strcat on argv[1], even though you don't know how much space that array has. You should use your own buffer of a known length.
You should check the return value of all your system calls to ensure they succeed. Checking with access and then assuming it'll be fine is not as good since calls can fail for other reasons.
Canonical Unix behavior is to exit with 0 for success, and >= 1 for error.
It's good practice to use a larger buffer (e.g. 65536 bytes instead of 1) when using read/write directly. stdio functions like fgetc already uses a larger buffer behind the scenes.
Using a named pipe obviously works, but since you spawn both processes it would be more natural to use an unnamed one.

How can i make sure that only a single instance of the process on Linux? [duplicate]

What would be your suggestion in order to create a single instance application, so that only one process is allowed to run at a time? File lock, mutex or what?
A good way is:
#include <sys/file.h>
#include <errno.h>
int pid_file = open("/var/run/whatever.pid", O_CREAT | O_RDWR, 0666);
int rc = flock(pid_file, LOCK_EX | LOCK_NB);
if(rc) {
if(EWOULDBLOCK == errno)
; // another instance is running
}
else {
// this is the first instance
}
Note that locking allows you to ignore stale pid files (i.e. you don't have to delete them). When the application terminates for any reason the OS releases the file lock for you.
Pid files are not terribly useful because they can be stale (the file exists but the process does not). Hence, the application executable itself can be locked instead of creating and locking a pid file.
A more advanced method is to create and bind a unix domain socket using a predefined socket name. Bind succeeds for the first instance of your application. Again, the OS unbinds the socket when the application terminates for any reason. When bind() fails another instance of the application can connect() and use this socket to pass its command line arguments to the first instance.
Here is a solution in C++. It uses the socket recommendation of Maxim. I like this solution better than the file based locking solution, because the file based one fails if the process crashes and does not delete the lock file. Another user will not be able to delete the file and lock it. The sockets are automatically deleted when the process exits.
Usage:
int main()
{
SingletonProcess singleton(5555); // pick a port number to use that is specific to this app
if (!singleton())
{
cerr << "process running already. See " << singleton.GetLockFileName() << endl;
return 1;
}
... rest of the app
}
Code:
#include <netinet/in.h>
class SingletonProcess
{
public:
SingletonProcess(uint16_t port0)
: socket_fd(-1)
, rc(1)
, port(port0)
{
}
~SingletonProcess()
{
if (socket_fd != -1)
{
close(socket_fd);
}
}
bool operator()()
{
if (socket_fd == -1 || rc)
{
socket_fd = -1;
rc = 1;
if ((socket_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
throw std::runtime_error(std::string("Could not create socket: ") + strerror(errno));
}
else
{
struct sockaddr_in name;
name.sin_family = AF_INET;
name.sin_port = htons (port);
name.sin_addr.s_addr = htonl (INADDR_ANY);
rc = bind (socket_fd, (struct sockaddr *) &name, sizeof (name));
}
}
return (socket_fd != -1 && rc == 0);
}
std::string GetLockFileName()
{
return "port " + std::to_string(port);
}
private:
int socket_fd = -1;
int rc;
uint16_t port;
};
For windows, a named kernel object (e.g. CreateEvent, CreateMutex). For unix, a pid-file - create a file and write your process ID to it.
You can create an "anonymous namespace" AF_UNIX socket. This is completely Linux-specific, but has the advantage that no filesystem actually has to exist.
Read the man page for unix(7) for more info.
Avoid file-based locking
It is always good to avoid a file based locking mechanism to implement the singleton instance of an application. The user can always rename the lock file to a different name and run the application again as follows:
mv lockfile.pid lockfile1.pid
Where lockfile.pid is the lock file based on which is checked for existence before running the application.
So, it is always preferable to use a locking scheme on object directly visible to only the kernel. So, anything which has to do with a file system is not reliable.
So the best option would be to bind to a inet socket. Note that unix domain sockets reside in the filesystem and are not reliable.
Alternatively, you can also do it using DBUS.
It's seems to not be mentioned - it is possible to create a mutex in shared memory but it needs to be marked as shared by attributes (not tested):
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_t *mutex = shmat(SHARED_MEMORY_ID, NULL, 0);
pthread_mutex_init(mutex, &attr);
There is also shared memory semaphores (but I failed to find out how to lock one):
int sem_id = semget(SHARED_MEMORY_KEY, 1, 0);
No one has mentioned it, but sem_open() creates a real named semaphore under modern POSIX-compliant OSes. If you give a semaphore an initial value of 1, it becomes a mutex (as long as it is strictly released only if a lock was successfully obtained).
With several sem_open()-based objects, you can create all of the common equivalent Windows named objects - named mutexes, named semaphores, and named events. Named events with "manual" set to true is a bit more difficult to emulate (it requires four semaphore objects to properly emulate CreateEvent(), SetEvent(), and ResetEvent()). Anyway, I digress.
Alternatively, there is named shared memory. You can initialize a pthread mutex with the "shared process" attribute in named shared memory and then all processes can safely access that mutex object after opening a handle to the shared memory with shm_open()/mmap(). sem_open() is easier if it is available for your platform (if it isn't, it should be for sanity's sake).
Regardless of the method you use, to test for a single instance of your application, use the trylock() variant of the wait function (e.g. sem_trywait()). If the process is the only one running, it will successfully lock the mutex. If it isn't, it will fail immediately.
Don't forget to unlock and close the mutex on application exit.
It will depend on which problem you want to avoid by forcing your application to have only one instance and the scope on which you consider instances.
For a daemon — the usual way is to have a /var/run/app.pid file.
For user application, I've had more problems with applications which prevented me to run them twice than with being able to run twice an application which shouldn't have been run so. So the answer on "why and on which scope" is very important and will probably bring answer specific on the why and the intended scope.
Here is a solution based on sem_open
/*
*compile with :
*gcc single.c -o single -pthread
*/
/*
* run multiple instance on 'single', and check the behavior
*/
#include <stdio.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <semaphore.h>
#include <unistd.h>
#include <errno.h>
#define SEM_NAME "/mysem_911"
int main()
{
sem_t *sem;
int rc;
sem = sem_open(SEM_NAME, O_CREAT, S_IRWXU, 1);
if(sem==SEM_FAILED){
printf("sem_open: failed errno:%d\n", errno);
}
rc=sem_trywait(sem);
if(rc == 0){
printf("Obtained lock !!!\n");
sleep(10);
//sem_post(sem);
sem_unlink(SEM_NAME);
}else{
printf("Lock not obtained\n");
}
}
One of the comments on a different answer says "I found sem_open() rather lacking". I am not sure about the specifics of what's lacking
Based on the hints in maxim's answer here is my POSIX solution of a dual-role daemon (i.e. a single application that can act as daemon and as a client communicating with that daemon). This scheme has the advantage of providing an elegant solution of the problem when the instance started first should be the daemon and all following executions should just load off the work at that daemon. It is a complete example but lacks a lot of stuff a real daemon should do (e.g. using syslog for logging and fork to put itself into background correctly, dropping privileges etc.), but it is already quite long and is fully working as is. I have only tested this on Linux so far but IIRC it should be all POSIX-compatible.
In the example the clients can send integers passed to them as first command line argument and parsed by atoi via the socket to the daemon which prints it to stdout. With this kind of sockets it is also possible to transfer arrays, structs and even file descriptors (see man 7 unix).
#include <stdio.h>
#include <stddef.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/un.h>
#define SOCKET_NAME "/tmp/exampled"
static int socket_fd = -1;
static bool isdaemon = false;
static bool run = true;
/* returns
* -1 on errors
* 0 on successful server bindings
* 1 on successful client connects
*/
int singleton_connect(const char *name) {
int len, tmpd;
struct sockaddr_un addr = {0};
if ((tmpd = socket(AF_UNIX, SOCK_DGRAM, 0)) < 0) {
printf("Could not create socket: '%s'.\n", strerror(errno));
return -1;
}
/* fill in socket address structure */
addr.sun_family = AF_UNIX;
strcpy(addr.sun_path, name);
len = offsetof(struct sockaddr_un, sun_path) + strlen(name);
int ret;
unsigned int retries = 1;
do {
/* bind the name to the descriptor */
ret = bind(tmpd, (struct sockaddr *)&addr, len);
/* if this succeeds there was no daemon before */
if (ret == 0) {
socket_fd = tmpd;
isdaemon = true;
return 0;
} else {
if (errno == EADDRINUSE) {
ret = connect(tmpd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (ret != 0) {
if (errno == ECONNREFUSED) {
printf("Could not connect to socket - assuming daemon died.\n");
unlink(name);
continue;
}
printf("Could not connect to socket: '%s'.\n", strerror(errno));
continue;
}
printf("Daemon is already running.\n");
socket_fd = tmpd;
return 1;
}
printf("Could not bind to socket: '%s'.\n", strerror(errno));
continue;
}
} while (retries-- > 0);
printf("Could neither connect to an existing daemon nor become one.\n");
close(tmpd);
return -1;
}
static void cleanup(void) {
if (socket_fd >= 0) {
if (isdaemon) {
if (unlink(SOCKET_NAME) < 0)
printf("Could not remove FIFO.\n");
} else
close(socket_fd);
}
}
static void handler(int sig) {
run = false;
}
int main(int argc, char **argv) {
switch (singleton_connect(SOCKET_NAME)) {
case 0: { /* Daemon */
struct sigaction sa;
sa.sa_handler = &handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGINT, &sa, NULL) != 0 || sigaction(SIGQUIT, &sa, NULL) != 0 || sigaction(SIGTERM, &sa, NULL) != 0) {
printf("Could not set up signal handlers!\n");
cleanup();
return EXIT_FAILURE;
}
struct msghdr msg = {0};
struct iovec iovec;
int client_arg;
iovec.iov_base = &client_arg;
iovec.iov_len = sizeof(client_arg);
msg.msg_iov = &iovec;
msg.msg_iovlen = 1;
while (run) {
int ret = recvmsg(socket_fd, &msg, MSG_DONTWAIT);
if (ret != sizeof(client_arg)) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
printf("Error while accessing socket: %s\n", strerror(errno));
exit(1);
}
printf("No further client_args in socket.\n");
} else {
printf("received client_arg=%d\n", client_arg);
}
/* do daemon stuff */
sleep(1);
}
printf("Dropped out of daemon loop. Shutting down.\n");
cleanup();
return EXIT_FAILURE;
}
case 1: { /* Client */
if (argc < 2) {
printf("Usage: %s <int>\n", argv[0]);
return EXIT_FAILURE;
}
struct iovec iovec;
struct msghdr msg = {0};
int client_arg = atoi(argv[1]);
iovec.iov_base = &client_arg;
iovec.iov_len = sizeof(client_arg);
msg.msg_iov = &iovec;
msg.msg_iovlen = 1;
int ret = sendmsg(socket_fd, &msg, 0);
if (ret != sizeof(client_arg)) {
if (ret < 0)
printf("Could not send device address to daemon: '%s'!\n", strerror(errno));
else
printf("Could not send device address to daemon completely!\n");
cleanup();
return EXIT_FAILURE;
}
printf("Sent client_arg (%d) to daemon.\n", client_arg);
break;
}
default:
cleanup();
return EXIT_FAILURE;
}
cleanup();
return EXIT_SUCCESS;
}
All credits go to Mark Lakata. I merely did some very minor touch up only.
main.cpp
#include "singleton.hpp"
#include <iostream>
using namespace std;
int main()
{
SingletonProcess singleton(5555); // pick a port number to use that is specific to this app
if (!singleton())
{
cerr << "process running already. See " << singleton.GetLockFileName() << endl;
return 1;
}
// ... rest of the app
}
singleton.hpp
#include <netinet/in.h>
#include <unistd.h>
#include <cerrno>
#include <string>
#include <cstring>
#include <stdexcept>
using namespace std;
class SingletonProcess
{
public:
SingletonProcess(uint16_t port0)
: socket_fd(-1)
, rc(1)
, port(port0)
{
}
~SingletonProcess()
{
if (socket_fd != -1)
{
close(socket_fd);
}
}
bool operator()()
{
if (socket_fd == -1 || rc)
{
socket_fd = -1;
rc = 1;
if ((socket_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
throw std::runtime_error(std::string("Could not create socket: ") + strerror(errno));
}
else
{
struct sockaddr_in name;
name.sin_family = AF_INET;
name.sin_port = htons (port);
name.sin_addr.s_addr = htonl (INADDR_ANY);
rc = bind (socket_fd, (struct sockaddr *) &name, sizeof (name));
}
}
return (socket_fd != -1 && rc == 0);
}
std::string GetLockFileName()
{
return "port " + std::to_string(port);
}
private:
int socket_fd = -1;
int rc;
uint16_t port;
};
#include <windows.h>
int main(int argc, char *argv[])
{
// ensure only one running instance
HANDLE hMutexH`enter code here`andle = CreateMutex(NULL, TRUE, L"my.mutex.name");
if (GetLastError() == ERROR_ALREADY_EXISTS)
{
return 0;
}
// rest of the program
ReleaseMutex(hMutexHandle);
CloseHandle(hMutexHandle);
return 0;
}
FROM: HERE
On Windows you could also create a shared data segment and use an interlocked function to test for the first occurence, e.g.
#include <Windows.h>
#include <stdio.h>
#include <conio.h>
#pragma data_seg("Shared")
volatile LONG lock = 0;
#pragma data_seg()
#pragma comment(linker, "/SECTION:Shared,RWS")
void main()
{
if (InterlockedExchange(&lock, 1) == 0)
printf("first\n");
else
printf("other\n");
getch();
}
I have just written one, and tested.
#define PID_FILE "/tmp/pidfile"
static void create_pidfile(void) {
int fd = open(PID_FILE, O_RDWR | O_CREAT | O_EXCL, 0);
close(fd);
}
int main(void) {
int fd = open(PID_FILE, O_RDONLY);
if (fd > 0) {
close(fd);
return 0;
}
// make sure only one instance is running
create_pidfile();
}
Just run this code on a seperate thread:
void lock() {
while(1) {
ofstream closer("myapplock.locker", ios::trunc);
closer << "locked";
closer.close();
}
}
Run this as your main code:
int main() {
ifstream reader("myapplock.locker");
string s;
reader >> s;
if (s != "locked") {
//your code
}
return 0;
}

SDL2/SDL.h causing undefined references in Non-SDL code

I've been having an awfully strange problem that I cannot seem to grasp. I'm almost convinced that this is a compiler bug.
xTech : xIncludes.hh
#ifndef _xIncludes_
#define _xIncludes_
#define SDL_MAIN_HANDLED
#include <string.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdint.h>
#include <vector>
#include <SDL2/SDL.h>
#if defined _WIN32
#include <winsock.h>
#endif
#endif
xTech : xSound.cc
#include "xSound.hh"
int xOGGStreamSource::_stream(ALuint Buffer) {
char data[BufferSize];
int size = 0;
int section;
int result;
while (size < BufferSize) {
result = ov_read(&_oggstream, data + size, BufferSize - size, 0, 2, 1, &section);
if (result > 0)
size += result;
else
if (result < 0)
return result;
else
break; //This seems a little redundant.... deal with it after it works.
}
if (size == 0) return 0;
alBufferData(Buffer, _format, data, size, _vorbisinfo->rate);
return 1;
}
void xOGGStreamSource::_empty() {
int queued;
alGetSourcei(_source, AL_BUFFERS_QUEUED, &queued);
while (queued--) {
ALuint Buffer;
alSourceUnqueueBuffers(_source, 1, &Buffer);
}
}
int xOGGStreamSource::Open(xString path) {
int result;
_oggfile = xOpenFile(path, "rb");
if (_oggfile.Buffer == NULL) {
xLogf("Audio", "Error in OGG File '%s', file does not exist.", path);
return -3;
}
if (result = ov_open(_oggfile.Buffer, &_oggstream, NULL, 0) < 0) {
xLogf("Audio", "Error in OGG File '%s', file is non-OGG.", path);
xCloseFile(_oggfile);
return -2;
}
_vorbisinfo = ov_info(&_oggstream, -1);
_vorbiscomment = ov_comment(&_oggstream, -1);
if (_vorbisinfo->channels == 1)
_format = AL_FORMAT_MONO16;
else
_format = AL_FORMAT_STEREO16;
alGenBuffers(2, _buffers);
alGenSources(1, &_source);
return 1;
}
void xOGGStreamSource::Close() {
alSourceStop(_source);
_empty();
alDeleteSources(1, &_source);
alDeleteBuffers(1, _buffers);
ov_clear(&_oggstream);
}
int xOGGStreamSource::Playback() {
if (Playing()) return 1;
if (!_stream(_buffers[0])) return 0;
if (!_stream(_buffers[1])) return 0;
alSourceQueueBuffers(_source, 2, _buffers);
alSourcePlay(_source);
return 1;
}
int xOGGStreamSource::Playing() {
ALenum state;
alGetSourcei(_source, AL_SOURCE_STATE, &state);
return (state == AL_PLAYING);
}
int xOGGStreamSource::Update(xVec3f_t Pos, xVec3f_t Vloc, xVec3f_t Dir, float Vol) {
int processed;
int active = 1;
alSource3f(_source, AL_POSITION, Pos.X, Pos.Y, Pos.Z);
alSource3f(_source, AL_VELOCITY, Vloc.X, Vloc.Y, Vloc.Z);
alSource3f(_source, AL_DIRECTION, Dir.X, Dir.Y, Dir.Z);
alSourcef (_source, AL_GAIN, Vol);
alSourcei (_source, AL_SOURCE_RELATIVE, AL_TRUE);
alGetSourcei(_source, AL_BUFFERS_PROCESSED, &processed);
while(processed--) {
ALuint Buffer;
alSourceUnqueueBuffers(_source, 1, &Buffer);
active = _stream(Buffer);
alSourceQueueBuffers(_source, 1, &Buffer);
}
return active;
}
xSound::xSound(xOGGStreamSource xss) { _source = xss; }
int xSound::PlaySound(float Volume, xVec3f_t Location) {
if (!_source.Playback()) return -3;
while(_source.Update(Location, xVec3f_t(0,0,0), xVec3f_t(0,0,0), Volume)) {
if (!_source.Playing()) {
if (!_source.Playback()) return -2;
else return -1;
}
}
_source.Close();
return 1;
}
xSoundManager::xSoundManager(){}
int xSoundManager::Init() {
_device = alcOpenDevice(NULL);
if (!_device) return -2;
_context = alcCreateContext(_device, NULL);
if (alcMakeContextCurrent(_context) == ALC_FALSE || !_context) return -1;
if (!Volume) {
xLogf("Error", "Volume in Audio is not set properly. Setting to default");
Volume = DEFAULT_VOLUME;
}
alListenerf(AL_GAIN, Volume);
if (!BufferSize) {
xLogf("Error", "Buffer size in Audio is not set properly. Setting to default");
BufferSize = DEFAULT_BUFFER_SIZE;
}
return 0;
}
xSound* xSoundManager::LoadOGG(xString file) {
xOGGStreamSource ogg;
if (ogg.Open(file) < 0) return NULL;
return new xSound(ogg);
}
xTechLibTest : main.cc
int main() {
xSetLogFile("xTechLibTest.log");
xSoundManager* audio = new xSoundManager();
if (audio->Init() < 0) return -1;
xSound* testsound1 = audio->LoadOGG("testsound.ogg");
if (testsound1 == NULL) return -2;
testsound1->PlaySound(1.0, xVec3f_t(1.0,0.5,0.3));
}
The above code and everything associated with it (string implementations, etc) work fine, no problems at all. That is until I include SDL.h; I get undefined references for every function I defined, when the compiler could find them with no problem before. It seems that the mere inclusion of SDL.h completely nullifies any definition I make. Any ideas what's going on here?
Have you properly included the linkage to the SDL libraries?
If you have built the binaries yourself, you need to include the path and library. On a linux system, if you have built the static libraries yourself, you will have a binary called libSDL2.a, however to link you need to specify SDL2 as your linked library.
Also as a side note, do you have a redundant include guard on your xsound.h file( via #ifdef _xsound_ ... ) ?
p.s. It will help the other users if you specify what how your environment is setup; compiler, system os, IDE.
It would be useful to see the output from your compiler/linker.
I've had similar problems with network related code when using Cygwin on a windows machine. I've had sockets working fine without SDL, as soon as I include SDL, the whole lot breaks with messages saying that certain header files and references can't be found.
I'm not certain, but I think it has something to do with the way that SDL has it's own main macros (here is a post about it here - simple tcp echo program not working when SDL included?).
I may be wrong, but is this similar to what you are seeing?

Linux ELF files: Which byte will differ for static and dynamic ELF programs?

I'm working with linux elf files.
I want to detect, if the given elf program is statically linked (full static link, ldd says "not a dynamic executable") or dynamically linked. The ELF is for embedded Linux, so I can't just run it or use ldd utility.
I want to do this entirely in my program, by reading and checking some bytes. I want not to depend on file utility or on libelf, binutils, etc.
Which bytes will be different?
How about using ldd.c from μClibc? It should be fairly easy to strip out any unwanted dependencies / checks if you want. I think this is a smarter approach than trying to figure out all the corner cases from reading man 5 elf, though FWIW it looks to be just checking for a PT_INTERP program header as you suspect in the comments.
Update: There's a few more checks. I've tried to extract the relevant parts, but I can't be sure if I've missed anything so check for yourself. The code checks 32-bit and 64-bit x86 ELF files. It assumes a little-endian architecture.
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <ctype.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>
int main(int argc, char* argv[])
{
const char* fname = argv[0];
if (argc >= 2) fname = argv[1];
int fd;
struct stat st;
void *mapping;
if ((fd = open(fname, O_RDONLY)) == -1) {
perror(fname);
return 1;
}
if (fstat(fd, &st)) {
perror("fstat");
close(fd);
return 1;
}
if ((mapping = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0)) == MAP_FAILED) {
perror("mmap");
close(fd);
return 1;
}
const Elf32_Ehdr* eh = mapping;
if (st.st_size < (off_t)sizeof(Elf32_Ehdr) ||
eh->e_ident[EI_MAG0] != ELFMAG0 ||
eh->e_ident[EI_MAG1] != ELFMAG1 ||
eh->e_ident[EI_MAG2] != ELFMAG2 ||
eh->e_ident[EI_MAG3] != ELFMAG3 ||
eh->e_ident[EI_VERSION] != EV_CURRENT) {
printf("Not a valid ELF file\n");
return 0;
}
if (eh->e_type != ET_EXEC && eh->e_type != ET_DYN) {
printf("Not executable or shared object\n");
return 0;
}
int is_dynamic = 0;
// change as appropriate, but remember that byteswapping might be needed in some cases
if (eh->e_ident[EI_CLASS] == ELFCLASS32 && eh->e_ident[EI_DATA] == ELFDATA2LSB && eh->e_machine == EM_386) {
uint16_t ph_cnt;
for (ph_cnt = 0; ph_cnt < eh->e_phnum; ph_cnt++) {
const Elf32_Phdr* ph = (const Elf32_Phdr*)((const uint8_t*)mapping + eh->e_phoff + ph_cnt * eh->e_phentsize);
if (ph->p_type == PT_DYNAMIC || ph->p_type == PT_INTERP) {
is_dynamic = 1;
}
}
} else if (eh->e_ident[EI_CLASS] == ELFCLASS64 && eh->e_ident[EI_DATA] == ELFDATA2LSB && eh->e_machine == EM_X86_64) {
const Elf64_Ehdr* eh = mapping;
uint16_t ph_cnt;
for (ph_cnt = 0; ph_cnt < eh->e_phnum; ph_cnt++) {
const Elf64_Phdr* ph = (const Elf64_Phdr*)((const uint8_t*)mapping + eh->e_phoff + ph_cnt * eh->e_phentsize);
if (ph->p_type == PT_DYNAMIC || ph->p_type == PT_INTERP) {
is_dynamic = 1;
}
}
} else {
printf("Unsupported architecture\n");
return 0;
}
munmap(mapping, st.st_size);
close(fd);
printf("%s: %sdynamic\n", fname, is_dynamic?"":"not ");
return 0;
}

Having a problem figuring out how to get Ethernet interface info on Mac OS X using ioctl/SIOCGIFADDR/SIOCGIFCONF?

Are you having a problem figuring out how to get interface info on Mac OS X using ioctl/SIOCGIFADDR/SIOCGIFCONF?
I had a lot of trouble getting code that worked fine on Linux to work on Mac OS X today.
Copy-paste to main.c and gcc main.c && ./a.out should work (lists all network interfaces, their ipv4/6 address, netmask and MAC address if associated):
Works fine on Mac OSX and iOS iPad/iPhone:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <ifaddrs.h>
#include <errno.h>
int main() {
struct ifaddrs *if_addrs = NULL;
struct ifaddrs *if_addr = NULL;
void *tmp = NULL;
char buf[INET6_ADDRSTRLEN];
if (0 == getifaddrs(&if_addrs)) {
for (if_addr = if_addrs; if_addr != NULL; if_addr = if_addr->ifa_next) {
printf("name : %s\n", if_addr->ifa_name);
// Address
if (if_addr->ifa_addr->sa_family == AF_INET) {
tmp = &((struct sockaddr_in *)if_addr->ifa_addr)->sin_addr;
} else {
tmp = &((struct sockaddr_in6 *)if_addr->ifa_addr)->sin6_addr;
}
printf("addr : %s\n",
inet_ntop(if_addr->ifa_addr->sa_family,
tmp,
buf,
sizeof(buf)));
// Mask
if (if_addr->ifa_netmask != NULL) {
if (if_addr->ifa_netmask->sa_family == AF_INET) {
tmp = &((struct sockaddr_in *)if_addr->ifa_netmask)->sin_addr;
} else {
tmp = &((struct sockaddr_in6 *)if_addr->ifa_netmask)->sin6_addr;
}
printf("mask : %s\n",
inet_ntop(if_addr->ifa_netmask->sa_family,
tmp,
buf,
sizeof(buf)));
}
// MAC address
if (if_addr->ifa_addr != NULL && if_addr->ifa_addr->sa_family == AF_LINK) {
struct sockaddr_dl* sdl = (struct sockaddr_dl *)if_addr->ifa_addr;
unsigned char mac[6];
if (6 == sdl->sdl_alen) {
memcpy(mac, LLADDR(sdl), sdl->sdl_alen);
printf("mac : %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
}
printf("\n");
}
freeifaddrs(if_addrs);
if_addrs = NULL;
} else {
printf("getifaddrs() failed with errno = %i %s\n", errno, strerror(errno));
return -1;
}
}
The mechanism to get MAC addresses is entirely different on BSD-derived OSes than on Linux. This includes OS X.
Here's code I use that works on Linux and OS X, and probably on the BSDs, too:
#if defined(HAVE_SIOCGIFHWADDR)
bool get_mac_address(char* mac_addr, const char* if_name = "eth0")
{
struct ifreq ifinfo;
strcpy(ifinfo.ifr_name, if_name);
int sd = socket(AF_INET, SOCK_DGRAM, 0);
int result = ioctl(sd, SIOCGIFHWADDR, &ifinfo);
close(sd);
if ((result == 0) && (ifinfo.ifr_hwaddr.sa_family == 1)) {
memcpy(mac_addr, ifinfo.ifr_hwaddr.sa_data, IFHWADDRLEN);
return true;
}
else {
return false;
}
}
#elif defined(HAVE_GETIFADDRS)
bool get_mac_address(char* mac_addr, const char* if_name = "en0")
{
ifaddrs* iflist;
bool found = false;
if (getifaddrs(&iflist) == 0) {
for (ifaddrs* cur = iflist; cur; cur = cur->ifa_next) {
if ((cur->ifa_addr->sa_family == AF_LINK) &&
(strcmp(cur->ifa_name, if_name) == 0) &&
cur->ifa_addr) {
sockaddr_dl* sdl = (sockaddr_dl*)cur->ifa_addr;
memcpy(mac_addr, LLADDR(sdl), sdl->sdl_alen);
found = true;
break;
}
}
freeifaddrs(iflist);
}
return found;
}
#else
# error no definition for get_mac_address() on this platform!
#endif
It's up to you to work out how to get the right HAVE_* macro defined for the platform. I happen to use autoconf for this, but you may have another way of dealing with platform differences.
Notice that the default interface name parameter for these functions is the default for the first Ethernet interface on Linux and OS X boxes. You may need to override this for other OSes, or pass another value if you're interested in the MAC address for a different interface.
This thread matched my problem somewhat:
http://discussions.apple.com/thread.jspa?messageID=10935410&tstart=0
This thread helped a lot:
https://lists.isc.org/pipermail/dhcp-hackers/2007-September/000767.html
because that thread eventually mentions that getifaddrs() should be used instead. The man page on Ubuntu 10.04 had a great example of how to use getifaddrs and using it as a reference helped me figure out code that worked on both Mac and Linux. I don't want anyone else to waste time on something so simple, so I'm posting and answering myself here. Hoping that my post helps you...

Resources