Not able to add cv2.GaussianBlur() to Keras Sequential model - python-3.x

The code is
model = Sequential()
model.add(Lambda(lambda x:cv2.GaussianBlur(x, (3,3), 0), input_shape=(160, 320, 3)))
And I have got this error:
TypeError: src is not a numpy array, neither a scalar
How can I create a pipeline of image processing functions to my input image. Should I create a user defined function and then add it to my layer. If so , kindly show an example

Related

Changing keras model input name

When i'm creating model ensemble consisting of 6 models in keras i do the following:
out = keras.layers.Average(name="output")(outputs) #6 models
model = Model(input, out, name='ensemble')
i would like to set the input to be
input = Input(SHAPE, name='my_input')
but then i get the error message because from what i understand when making an avarage model it's input was automatically set to 'input_6', so i get an error: Graph disconnected: cannot obtain value for tensor Tensor("input_6:0", shape=(?, 256, 256, 1), dtype=float32). Is there a way to change model input name?

keras: extractor one layer as a model

There are several good answers for getting the output of a intermediate layer in keras model. But I want to extract one layer in a keras model, and use the layer's input as the new model's input, output as the new model's output. And I have tried:
extractor = Model(model.get_layer('dw_conv5').input, model.get_layer('dw_conv5').output)
But there is an error:
Input layers to a Model must be InputLayer objects. Received inputs: Tensor("leaky_re_lu_4/LeakyRelu/Maximum:0", shape=(?, 3, 3, 256), dtype=float32). Input 0 (0-based) originates from layer type LeakyReLU.
inputs = Input(a_compatible_shape)
outputs = model.get_layer('dw_conv5')(inputs)
model = Model(inputs,outputs)

TypeError when trying to create a BLSTM network in Keras

I'm a bit new to Keras and deep learning. I'm currently trying to replicate this paper but when I'm compiling the second model (with the LSTMs) I get the following error:
"TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'"
The description of the model is this:
Input (length T is appliance specific window size)
Parallel 1D convolution with filter size 3, 5, and 7
respectively, stride=1, number of filters=32,
activation type=linear, border mode=same
Merge layer which concatenates the output of
parallel 1D convolutions
Bidirectional LSTM consists of a forward LSTM
and a backward LSTM, output_dim=128
Bidirectional LSTM consists of a forward LSTM
and a backward LSTM, output_dim=128
Dense layer, output_dim=128, activation type=ReLU
Dense layer, output_dim= T , activation type=linear
My code is this:
from keras import layers, Input
from keras.models import Model
def lstm_net(T):
input_layer = Input(shape=(T,1))
branch_a = layers.Conv1D(32, 3, activation='linear', padding='same', strides=1)(input_layer)
branch_b = layers.Conv1D(32, 5, activation='linear', padding='same', strides=1)(input_layer)
branch_c = layers.Conv1D(32, 7, activation='linear', padding='same', strides=1)(input_layer)
merge_layer = layers.Concatenate(axis=-1)([branch_a, branch_b, branch_c])
print(merge_layer.shape)
BLSTM1 = layers.Bidirectional(layers.LSTM(128, input_shape=(8,40,96)))(merge_layer)
print(BLSTM1.shape)
BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)
dense_layer = layers.Dense(128, activation='relu')(BLSTM2)
output_dense = layers.Dense(1, activation='linear')(dense_layer)
model = Model(input_layer, output_dense)
model.name = "lstm_net"
return model
model = lstm_net(40)
After that I get the above error. My goal is to give as input a batch of 8 sequences of length 40 and get as output a batch of 8 sequences of length 40 too. I found this issue on Keras Github LSTM layer cannot connect to Dense layer after Flatten #818 and there #fchollet suggests that I should specify the 'input_shape' in the first layer which I did but probably not correctly. I put the two print statements to see how the shape is changing and the output is:
(?, 40, 96)
(?, 256)
The error occurs on the line BLSTM2 is defined and can be seen in full here
Your problem lies in these three lines:
BLSTM1 = layers.Bidirectional(layers.LSTM(128, input_shape=(8,40,96)))(merge_layer)
print(BLSTM1.shape)
BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)
As a default, LSTM is returning only the last element of computations - so your data is losing its sequential nature. That's why the proceeding layer raises an error. Change this line to:
BLSTM1 = layers.Bidirectional(layers.LSTM(128, return_sequences=True))(merge_layer)
print(BLSTM1.shape)
BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)
In order to make the input to the second LSTM to have sequential nature also.
Aside of this - I'd rather not use input_shape in middle model layer as it's automatically inferred.

Base64 images with Keras and Google Cloud ML

I'm predicting image classes using Keras. It works in Google Cloud ML (GCML), but for efficiency need change it to pass base64 strings instead of json array. Related Documentation
I can easily run python code to decode a base64 string into json array, but when using GCML I don't have the opportunity to run a preprocessing step (unless maybe use a Lambda layer in Keras, but I don't think that is the correct approach).
Another answer suggested adding tf.placeholder with type of tf.string, which makes sense, but how to incorporate that into the Keras model?
Here is complete code for training the model and saving the exported model for GCML...
import os
import numpy as np
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing import image
from tensorflow.python.platform import gfile
IMAGE_HEIGHT = 138
IMAGE_WIDTH = 106
NUM_CLASSES = 329
def preprocess(filename):
# decode the image file starting from the filename
# end up with pixel values that are in the -1, 1 range
image_contents = tf.read_file(filename)
image = tf.image.decode_png(image_contents, channels=1)
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 0-1
image = tf.expand_dims(image, 0) # resize_bilinear needs batches
image = tf.image.resize_bilinear(image, [IMAGE_HEIGHT, IMAGE_WIDTH], align_corners=False)
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0) # -1 to 1
image = tf.squeeze(image,[0])
return image
filelist = gfile.ListDirectory("images")
sess = tf.Session()
with sess.as_default():
x = np.array([np.array( preprocess(os.path.join("images", filename)).eval() ) for filename in filelist])
input_shape = (IMAGE_HEIGHT, IMAGE_WIDTH, 1) # 1, because preprocessing made grayscale
# in our case the labels come from part of the filename
y = np.array([int(filename[filename.index('_')+1:-4]) for filename in filelist])
# convert class labels to numbers
y = keras.utils.to_categorical(y, NUM_CLASSES)
########## TODO: something here? ##########
image = K.placeholder(shape=(), dtype=tf.string)
decoded = tf.image.decode_jpeg(image, channels=3)
# scores = build_model(decoded)
model = Sequential()
# model.add(decoded)
model.add(Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(
x,
y,
batch_size=64,
epochs=20,
verbose=1,
validation_split=0.2,
shuffle=False
)
predict_signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs={'input_bytes':tf.saved_model.utils.build_tensor_info(model.input)},
########## TODO: something here? ##########
# inputs={'input': image }, # input name must have "_bytes" suffix to use base64.
outputs={'formId': tf.saved_model.utils.build_tensor_info(model.output)},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
builder = tf.saved_model.builder.SavedModelBuilder("exported_model")
builder.add_meta_graph_and_variables(
sess=K.get_session(),
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature
},
legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
)
builder.save()
This is related to my previous question.
Update:
The heart of the question is how to incorporate the placeholder that calls decode into the Keras model. In other words, after creating the placeholder that decodes the base64 string to a tensor, how to incorporate that into what Keras runs? I assume it needs to be a layer.
image = K.placeholder(shape=(), dtype=tf.string)
decoded = tf.image.decode_jpeg(image, channels=3)
model = Sequential()
# Something like this, but this fails because it is a tensor, not a Keras layer. Possibly this is where a Lambda layer comes in?
model.add(decoded)
model.add(Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=input_shape))
...
Update 2:
Trying to use a lambda layer to accomplish this...
import keras
from keras.models import Sequential
from keras.layers import Lambda
from keras import backend as K
import tensorflow as tf
image = K.placeholder(shape=(), dtype=tf.string)
model = Sequential()
model.add(Lambda(lambda image: tf.image.decode_jpeg(image, channels=3), input_shape=() ))
Gives the error: TypeError: Input 'contents' of 'DecodeJpeg' Op has type float32 that does not match expected type of string.
first of all I use tf.keras but this should not be a big problem.
So here is an example of how you can read a base64 decoded jpeg:
def preprocess_and_decode(img_str, new_shape=[299,299]):
img = tf.io.decode_base64(img_str)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize_images(img, new_shape, method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
# if you need to squeeze your input range to [0,1] or [-1,1] do it here
return img
InputLayer = Input(shape = (1,),dtype="string")
OutputLayer = Lambda(lambda img : tf.map_fn(lambda im : preprocess_and_decode(im[0]), img, dtype="float32"))(InputLayer)
base64_model = tf.keras.Model(InputLayer,OutputLayer)
The code above creates a model that takes a jpeg of any size, resizes it to 299x299 and returns as 299x299x3 tensor. This model can be exported directly to saved_model and used for Cloud ML Engine serving. It is a little bit stupid, since the only thing it does is the convertion of base64 to tensor.
If you need to redirect the output of this model to the input of an existing trained and compiled model (e.g inception_v3) you have to do the following:
base64_input = base64_model.input
final_output = inception_v3(base64_model.output)
new_model = tf.keras.Model(base64_input,final_output)
This new_model can be saved. It takes base64 jpeg and returns classes identified by the inception_v3 part.
Another answer suggested adding tf.placeholder with type of tf.string, which makes sense, but how to incorporate that into the Keras model?
In Keras you can access your selected Backend (in this case Tensorflow) by doing:
from keras import backend as K
This you already seem to import on your code. That will enable you to access some native methods and resources available on the backend of your choice. It is the case that Keras backend includes a method for creating placeholders, among other utilities. Regarding placeholders, we can see what the Keras docs indicates about them:
placeholder
keras.backend.placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None)
Instantiates a placeholder tensor and returns it.
It also gives some example on its use:
>>> from keras import backend as K
>>> input_ph = K.placeholder(shape=(2, 4, 5))
>>> input_ph._keras_shape
(2, 4, 5)
>>> input_ph
<tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32>
As you can see, this is returning a Tensorflow tensor, with shape (2,4,5) and of dtype float. If you had another backend while doing the example you would get another tensor object (a Theano one surely). You can therefore use this placeholder() to adapt the solution you got on your previous question.
In conclusion, you can use your backend imported as K (or whatever you want) to do calls on the methods and objects available on the backend of your choice, by doing K.foo.bar() on the desired method. I suggest you give a read to what the Keras Backend to explore more things that can be useful for you on future situations.
Update: As per your edit. Yes, this placeholder should be a layer in your model. Specifically, it should be the Input Layer of your model, as it holds your decoded image (as Keras needs it that way) to classify.

How to change input shape in Sequential model in Keras

I have a sequential model that I built in Keras.
I try to figure out how to change the shape of the input. In the following example
model = Sequential()
model.add(Dense(32, input_shape=(500,)))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
let's say that I want to build a new model with different input shape, conceptual this should looks like this:
model1 = model
model1.layers[0] = Dense(32, input_shape=(250,))
is there a way to modify the model input shape?
Somewhat related, so hopefully someone will find this useful: If you have an existing model where the input is a placeholder that looks like (None, None, None, 3) for example, you can load the model, replace the first layer with a concretely shaped input. Transformation of this kind is very useful when for example you want to use your model in iOS CoreML (In my case the input of the model was a MLMultiArray instead of CVPixelBuffer, and the model compilation failed)
from keras.models import load_model
from keras import backend as K
from keras.engine import InputLayer
import coremltools
model = load_model('your_model.h5')
# Create a new input layer to replace the (None,None,None,3) input layer :
input_layer = InputLayer(input_shape=(272, 480, 3), name="input_1")
# Save and convert :
model.layers[0] = input_layer
model.save("reshaped_model.h5")
coreml_model = coremltools.converters.keras.convert('reshaped_model.h5')
coreml_model.save('MyPredictor.mlmodel')
Think about what changing the input shape in that situation would mean.
Your first model
model.add(Dense(32, input_shape=(500,)))
Has a dense layer that really is a 500x32 matrix.
If you changed your input to 250 elements, your layers's matrix and input dimension would mismatch.
If, however, what you were trying to achieve was to reuse your last layer's trained parameters from your first 500 element input model, you could get those weights by get_weights. Then you could rebuild a new model and set values at the new model with set_weights.
model1 = Sequential()
model1.add(Dense(32, input_shape=(250,)))
model1.add(Dense(10, activation='softmax'))
model1.layers[1].set_weights(model1.layers[1].get_weights())
Keep in mind that model1 first layer (aka model1.layers[0]) would still be untrained
Here is another solution without defining each layer of the model from scratch. The key for me was to use "_layers" instead of "layers". The latter only seems to return a copy.
import keras
import numpy as np
def get_model():
old_input_shape = (20, 20, 3)
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(9, (3, 3), padding="same", input_shape=old_input_shape))
model.add(keras.layers.MaxPooling2D((2, 2)))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(1, activation="sigmoid"))
model.compile(loss='binary_crossentropy', optimizer=keras.optimizers.Adam(lr=0.0001), metrics=['acc'], )
model.summary()
return model
def change_model(model, new_input_shape=(None, 40, 40, 3)):
# replace input shape of first layer
model._layers[1].batch_input_shape = new_input_shape
# feel free to modify additional parameters of other layers, for example...
model._layers[2].pool_size = (8, 8)
model._layers[2].strides = (8, 8)
# rebuild model architecture by exporting and importing via json
new_model = keras.models.model_from_json(model.to_json())
new_model.summary()
# copy weights from old model to new one
for layer in new_model.layers:
try:
layer.set_weights(model.get_layer(name=layer.name).get_weights())
except:
print("Could not transfer weights for layer {}".format(layer.name))
# test new model on a random input image
X = np.random.rand(10, 40, 40, 3)
y_pred = new_model.predict(X)
print(y_pred)
return new_model
if __name__ == '__main__':
model = get_model()
new_model = change_model(model)

Resources