This code works fine but I want to know the topic name instead of Topic: 0 and Topic:1, How do i know which topic this word comes in?
for index, topic in lda_model.show_topics(formatted=False, num_words= 30):
print('Topic: {} \nWords: {}'.format(idx, [w[0] for w in topic]))
This is ouput
Topic: 0
Words: ['associate', 'incident', 'time', 'task', 'pain', 'amcare', 'work', 'ppe', 'train', 'proper', 'report', 'standard', 'pmv', 'level', 'perform', 'wear', 'date', 'factor', 'overtime', 'location', 'area', 'yes', 'new', 'treatment', 'start', 'stretch', 'assign', 'condition', 'participate', 'environmental']
Topic: 1
Words: ['work', 'associate', 'cage', 'aid', 'shift', 'leave', 'area', 'eye', 'incident', 'aider', 'hit', 'pit', 'manager', 'return', 'start', 'continue', 'pick', 'call', 'come', 'right', 'take', 'report', 'lead', 'break', 'paramedic', 'receive', 'get', 'inform', 'room', 'head']
I want "Topic Name" instead of Topic : 0
Topic: 0
Words: ['associate', 'incident', 'time', 'task', 'pain', 'amcare', 'work', 'ppe', 'train', 'proper', 'report', 'standard', 'pmv', 'level', 'perform', 'wear', 'date', 'factor', 'overtime', 'location', 'area', 'yes', 'new', 'treatment', 'start', 'stretch', 'assign', 'condition', 'participate', 'environmental']
Topic: 1
Words: ['work', 'associate', 'cage', 'aid', 'shift', 'leave', 'area', 'eye', 'incident', 'aider', 'hit', 'pit', 'manager', 'return', 'start', 'continue', 'pick', 'call', 'come', 'right', 'take', 'report', 'lead', 'break', 'paramedic', 'receive', 'get', 'inform', 'room', 'head']
This might work (Untested)
for index, topic in lda_model.show_topics(formatted=False, num_words= 30):
print('Topic: {} \nWords: {}'.format(lda_model.print_topic(index), [w[0] for w in topic]))
Try changing the Formatted parameter to True like this:
for index, topic in lda_model.show_topics(formatted=True, num_words= 30):
print('Topic: {} \nWords: {}'.format(topic[0], [w[0] for w in topic[1]]))
You can also check out the documentation for more information:
https://radimrehurek.com/gensim/models/ldamodel.html
Related
I am having a list in python. I would like to extract the field countryRegion only. How am I supposed to do that. The code lst['countryRegion'] procduces the error : TypeError: list indices must be integers or slices, not str.
Help me please
[{'__type': 'Location:http://schemas.microsoft.com/search/local/ws/rest/v1',
'address': {'adminDistrict': 'Tamil Nadu',
'adminDistrict2': 'Chennai',
'countryRegion': 'India',
'formattedAddress': 'Chennai, Tamil Nadu',
'locality': 'Chennai'},
'bbox': [12.85071, 79.97689, 13.23403, 80.33292],
'confidence': 'High',
'entityType': 'PopulatedPlace',
'geocodePoints': [{'calculationMethod': 'None',
'coordinates': [13.07209, 80.20186],
'type': 'Point',
'usageTypes': ['Display']}],
'matchCodes': ['Good'],
'name': 'Chennai, Tamil Nadu',
'point': {'coordinates': [13.07209, 80.20186], 'type': 'Point'}}]
Given your input
lst = [{'__type': 'Location:http://schemas.microsoft.com/search/local/ws/rest/v1',
'address': {'adminDistrict': 'Tamil Nadu',
'adminDistrict2': 'Chennai',
'countryRegion': 'India',
'formattedAddress': 'Chennai, Tamil Nadu',
'locality': 'Chennai'},
'bbox': [12.85071, 79.97689, 13.23403, 80.33292],
'confidence': 'High',
'entityType': 'PopulatedPlace',
'geocodePoints': [{'calculationMethod': 'None',
'coordinates': [13.07209, 80.20186],
'type': 'Point',
'usageTypes': ['Display']}],
'matchCodes': ['Good'],
'name': 'Chennai, Tamil Nadu',
'point': {'coordinates': [13.07209, 80.20186], 'type': 'Point'}}]
you get your data from
lst[0]['address']['countryRegion']
First, TypeError is due to lst being a list type and not Dictionary type
Second, countryRegion is not a key of your dictionary, but inside the dictionary value from key address
It is producing that error because of the list containing a single element that is of type dictionary.
so to access the desired value you can just use the command
list_dic = [{'__type': 'Location:http://schemas.microsoft.com/search/local/ws/rest/v1',
'address': {'adminDistrict': 'Tamil Nadu',
'adminDistrict2': 'Chennai',
'countryRegion': 'India',
'formattedAddress': 'Chennai, Tamil Nadu',
'locality': 'Chennai'},
'bbox': [12.85071, 79.97689, 13.23403, 80.33292],
'confidence': 'High',
'entityType': 'PopulatedPlace',
'geocodePoints': [{'calculationMethod': 'None',
'coordinates': [13.07209, 80.20186],
'type': 'Point',
'usageTypes': ['Display']}],
'matchCodes': ['Good'],
'name': 'Chennai, Tamil Nadu',
'point': {'coordinates': [13.07209, 80.20186], 'type': 'Point'}}]
lst_dic[0]['address']['countryRegion']
That's because it is a list of dictionary.
I dont know how you obtain the json but here's what i was able to get:
js=[{'__type': 'Location:http://schemas.microsoft.com/search/local/ws/rest/v1',
'address': {'adminDistrict': 'Tamil Nadu',
'adminDistrict2': 'Chennai',
'countryRegion': 'India',
'formattedAddress': 'Chennai, Tamil Nadu',
'locality': 'Chennai'},
'bbox': [12.85071, 79.97689, 13.23403, 80.33292],
'confidence': 'High',
'entityType': 'PopulatedPlace',
'geocodePoints': [{'calculationMethod': 'None',
'coordinates': [13.07209, 80.20186],
'type': 'Point',
'usageTypes': ['Display']}],
'matchCodes': ['Good'],
'name': 'Chennai, Tamil Nadu',
'point': {'coordinates': [13.07209, 80.20186], 'type': 'Point'}}]
for i in range(len(js)):
print(js[i]["address"]["countryRegion"])
messages=%5B%7B%22values%22%3A+%7B%22momentum%22%3A+%220.00%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22momentum%22%2C+%22indicator_number%22%3A+0%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22signal%22%3A+%5B%22momentum%22%5D%2C+%22hot%22%3A+0%2C+%22cold%22%3A+0%2C+%22candle_period%22%3A+%224h%22%2C+%22period_count%22%3A+10%7D%2C+%22status%22%3A+%22hot%22%7D%2C+%22status%22%3A+%22hot%22%2C+%22last_status%22%3A+%22hot%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22%22%2C+%22indicator_label%22%3A+%22%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%2C+%7B%22values%22%3A+%7B%22leading_span_a%22%3A+%220.00%22%2C+%22leading_span_b%22%3A+%220.00%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22ichimoku%22%2C+%22indicator_number%22%3A+1%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22signal%22%3A+%5B%22leading_span_a%22%2C+%22leading_span_b%22%5D%2C+%22hot%22%3A+true%2C+%22cold%22%3A+true%2C+%22candle_period%22%3A+%224h%22%2C+%22hot_label%22%3A+%22Bullish+Alert%22%2C+%22cold_label%22%3A+%22Bearish+Alert%22%2C+%22indicator_label%22%3A+%22ICHIMOKU+4+hr%22%2C+%22mute_cold%22%3A+false%7D%2C+%22status%22%3A+%22cold%22%7D%2C+%22status%22%3A+%22cold%22%2C+%22last_status%22%3A+%22cold%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22Bearish+Alert%22%2C+%22indicator_label%22%3A+%22ICHIMOKU+4+hr%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%2C+%7B%22values%22%3A+%7B%22bbp%22%3A+%220.96%22%2C+%22mfi%22%3A+%2298.05%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22bbp%22%2C+%22indicator_number%22%3A+1%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22candle_period%22%3A+%224h%22%2C+%22period_count%22%3A+20%2C+%22hot%22%3A+0.09%2C+%22cold%22%3A+0.8%2C+%22std_dev%22%3A+2%2C+%22signal%22%3A+%5B%22bbp%22%2C+%22mfi%22%5D%2C+%22hot_label%22%3A+%22Lower+Band%22%2C+%22cold_label%22%3A+%22Upper+Band+BB%22%2C+%22indicator_label%22%3A+%22Bollinger+4+hr%22%2C+%22mute_cold%22%3A+false%7D%2C+%22status%22%3A+%22cold%22%7D%2C+%22status%22%3A+%22cold%22%2C+%22last_status%22%3A+%22cold%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22Upper+Band+BB%22%2C+%22indicator_label%22%3A+%22Bollinger+4+hr%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%5D
i need to convert this data in python3 to standard json for post json api
any solution ?
thanks
That looks like it's been URL form encoded.
Try
import urllib.parse
import json
# note **without** the message= part
stuff = "%5B%7B%22values%22%3A+%7B%22momentum%22%3A+%220.00%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22momentum%22%2C+%22indicator_number%22%3A+0%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22signal%22%3A+%5B%22momentum%22%5D%2C+%22hot%22%3A+0%2C+%22cold%22%3A+0%2C+%22candle_period%22%3A+%224h%22%2C+%22period_count%22%3A+10%7D%2C+%22status%22%3A+%22hot%22%7D%2C+%22status%22%3A+%22hot%22%2C+%22last_status%22%3A+%22hot%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22%22%2C+%22indicator_label%22%3A+%22%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%2C+%7B%22values%22%3A+%7B%22leading_span_a%22%3A+%220.00%22%2C+%22leading_span_b%22%3A+%220.00%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22ichimoku%22%2C+%22indicator_number%22%3A+1%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22signal%22%3A+%5B%22leading_span_a%22%2C+%22leading_span_b%22%5D%2C+%22hot%22%3A+true%2C+%22cold%22%3A+true%2C+%22candle_period%22%3A+%224h%22%2C+%22hot_label%22%3A+%22Bullish+Alert%22%2C+%22cold_label%22%3A+%22Bearish+Alert%22%2C+%22indicator_label%22%3A+%22ICHIMOKU+4+hr%22%2C+%22mute_cold%22%3A+false%7D%2C+%22status%22%3A+%22cold%22%7D%2C+%22status%22%3A+%22cold%22%2C+%22last_status%22%3A+%22cold%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22Bearish+Alert%22%2C+%22indicator_label%22%3A+%22ICHIMOKU+4+hr%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%2C+%7B%22values%22%3A+%7B%22bbp%22%3A+%220.96%22%2C+%22mfi%22%3A+%2298.05%22%7D%2C+%22exchange%22%3A+%22binance%22%2C+%22market%22%3A+%22BNT%2FETH%22%2C+%22base_currency%22%3A+%22BNT%22%2C+%22quote_currency%22%3A+%22ETH%22%2C+%22indicator%22%3A+%22bbp%22%2C+%22indicator_number%22%3A+1%2C+%22analysis%22%3A+%7B%22config%22%3A+%7B%22enabled%22%3A+true%2C+%22alert_enabled%22%3A+true%2C+%22alert_frequency%22%3A+%22once%22%2C+%22candle_period%22%3A+%224h%22%2C+%22period_count%22%3A+20%2C+%22hot%22%3A+0.09%2C+%22cold%22%3A+0.8%2C+%22std_dev%22%3A+2%2C+%22signal%22%3A+%5B%22bbp%22%2C+%22mfi%22%5D%2C+%22hot_label%22%3A+%22Lower+Band%22%2C+%22cold_label%22%3A+%22Upper+Band+BB%22%2C+%22indicator_label%22%3A+%22Bollinger+4+hr%22%2C+%22mute_cold%22%3A+false%7D%2C+%22status%22%3A+%22cold%22%7D%2C+%22status%22%3A+%22cold%22%2C+%22last_status%22%3A+%22cold%22%2C+%22prices%22%3A+%22+Open%3A+0.000989+High%3A+0.000998+Low%3A+0.000980+Close%3A+0.000998%22%2C+%22lrsi%22%3A+%22%22%2C+%22creation_date%22%3A+%222020-05-10+16%3A16%3A23%22%2C+%22hot_cold_label%22%3A+%22Upper+Band+BB%22%2C+%22indicator_label%22%3A+%22Bollinger+4+hr%22%2C+%22price_value%22%3A+%7B%22open%22%3A+0.000989%2C+%22high%22%3A+0.000998%2C+%22low%22%3A+0.00098%2C+%22close%22%3A+0.000998%7D%2C+%22decimal_format%22%3A+%22%25.6f%22%7D%5D"
parsed = urllib.parse.unquote_plus(stuff) # <<< encoded form, get rid of +
as_json = json.loads(parsed)
print(as_json)
gives me
[{'values': {'momentum': '0.00'}, 'exchange': 'binance', 'market': 'BNT/ETH', 'base_currency': 'BNT', 'quote_currency': 'ETH', 'indicator': 'momentum', 'indicator_number': 0, 'analysis': {'config': {'enabled': True, 'alert_enabled': True, 'alert_frequency': 'once', 'signal': ['momentum'], 'hot': 0, 'cold': 0, 'candle_period': '4h', 'period_count': 10}, 'status': 'hot'}, 'status': 'hot', 'last_status': 'hot', 'prices': ' Open: 0.000989 High: 0.000998 Low: 0.000980 Close: 0.000998', 'lrsi': '', 'creation_date': '2020-05-10 16:16:23', 'hot_cold_label': '', 'indicator_label': '', 'price_value': {'open': 0.000989, 'high': 0.000998, 'low': 0.00098, 'close': 0.000998}, 'decimal_format': '%.6f'}, {'values': {'leading_span_a': '0.00', 'leading_span_b': '0.00'}, 'exchange': 'binance', 'market': 'BNT/ETH', 'base_currency': 'BNT', 'quote_currency': 'ETH', 'indicator': 'ichimoku', 'indicator_number': 1, 'analysis': {'config': {'enabled': True, 'alert_enabled': True, 'alert_frequency': 'once', 'signal': ['leading_span_a', 'leading_span_b'], 'hot': True, 'cold': True, 'candle_period': '4h', 'hot_label': 'Bullish Alert', 'cold_label': 'Bearish Alert', 'indicator_label': 'ICHIMOKU 4 hr', 'mute_cold': False}, 'status': 'cold'}, 'status': 'cold', 'last_status': 'cold', 'prices': ' Open: 0.000989 High: 0.000998 Low: 0.000980 Close: 0.000998', 'lrsi': '', 'creation_date': '2020-05-10 16:16:23', 'hot_cold_label': 'Bearish Alert', 'indicator_label': 'ICHIMOKU 4 hr', 'price_value': {'open': 0.000989, 'high': 0.000998, 'low': 0.00098, 'close': 0.000998}, 'decimal_format': '%.6f'}, {'values': {'bbp': '0.96', 'mfi': '98.05'}, 'exchange': 'binance', 'market': 'BNT/ETH', 'base_currency': 'BNT', 'quote_currency': 'ETH', 'indicator': 'bbp', 'indicator_number': 1, 'analysis': {'config': {'enabled': True, 'alert_enabled': True, 'alert_frequency': 'once', 'candle_period': '4h', 'period_count': 20, 'hot': 0.09, 'cold': 0.8, 'std_dev': 2, 'signal': ['bbp', 'mfi'], 'hot_label': 'Lower Band', 'cold_label': 'Upper Band BB', 'indicator_label': 'Bollinger 4 hr', 'mute_cold': False}, 'status': 'cold'}, 'status': 'cold', 'last_status': 'cold', 'prices': ' Open: 0.000989 High: 0.000998 Low: 0.000980 Close: 0.000998', 'lrsi': '', 'creation_date': '2020-05-10 16:16:23', 'hot_cold_label': 'Upper Band BB', 'indicator_label': 'Bollinger 4 hr', 'price_value': {'open': 0.000989, 'high': 0.000998, 'low': 0.00098, 'close': 0.000998}, 'decimal_format': '%.6f'}]
Whereas if you want a JSON string to POST somewhere, call as_string = json.dumps(parsed)
Platform: RHEL 7, cloudera CDH 6.2 hadoop distrubution, pyspark 3.7.1
What i tried: I could write a table to hive warehouse when I explicitly mention the table name as saveAsTable("tablename"). But, i am getting below error when I try to take the table name from a python variable in a "for loop" as shown below.
Similar to: How to save a dataframe result in hive table with different name on each iteration using pyspark
prefix_list = ["hive_table_name1","hive_table_name2", "hive_table_name3"]
list1 = ["dataframe_content_1", "dataframe_content__2", "dataframe_content_3"]
for index, l in enumerate(list1):
selecteddata = df.select(l)
#Embedding table name within quotations
tablename = '"' + prefix_list[index] + '"'
# write the "selecteddata" dataframe to hive table
selecteddata.write.mode("overwrite").saveAsTable(tablename)
Expected: 3 different hive tables in default hive warehouse
Actual:
"ReturnMessages"
Traceback (most recent call last):
File "/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
File "/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o86.saveAsTable.
: org.apache.spark.sql.catalyst.parser.ParseException:
mismatched input '"ReturnMessages"' expecting {'SELECT', 'FROM', 'ADD', 'AS', 'ALL', 'ANY', 'DISTINCT', 'WHERE', 'GROUP', 'BY', 'GROUPING', 'SETS', 'CUBE', 'ROLLUP', 'ORDER', 'HAVING', 'LIMIT', 'AT', 'OR', 'AND', 'IN', NOT, 'NO', 'EXISTS', 'BETWEEN', 'LIKE', RLIKE, 'IS', 'NULL', 'TRUE', 'FALSE', 'NULLS', 'ASC', 'DESC', 'FOR', 'INTERVAL', 'CASE', 'WHEN', 'THEN', 'ELSE', 'END', 'JOIN', 'CROSS', 'OUTER', 'INNER', 'LEFT', 'SEMI', 'RIGHT', 'FULL', 'NATURAL', 'ON', 'PIVOT', 'LATERAL', 'WINDOW', 'OVER', 'PARTITION', 'RANGE', 'ROWS', 'UNBOUNDED', 'PRECEDING', 'FOLLOWING', 'CURRENT', 'FIRST', 'AFTER', 'LAST', 'ROW', 'WITH', 'VALUES', 'CREATE', 'TABLE', 'DIRECTORY', 'VIEW', 'REPLACE', 'INSERT', 'DELETE', 'INTO', 'DESCRIBE', 'EXPLAIN', 'FORMAT', 'LOGICAL', 'CODEGEN', 'COST', 'CAST', 'SHOW', 'TABLES', 'COLUMNS', 'COLUMN', 'USE', 'PARTITIONS', 'FUNCTIONS', 'DROP', 'UNION', 'EXCEPT', 'MINUS', 'INTERSECT', 'TO', 'TABLESAMPLE', 'STRATIFY', 'ALTER', 'RENAME', 'ARRAY', 'MAP', 'STRUCT', 'COMMENT', 'SET', 'RESET', 'DATA', 'START', 'TRANSACTION', 'COMMIT', 'ROLLBACK', 'MACRO', 'IGNORE', 'BOTH', 'LEADING', 'TRAILING', 'IF', 'POSITION', 'EXTRACT', 'DIV', 'PERCENT', 'BUCKET', 'OUT', 'OF', 'SORT', 'CLUSTER', 'DISTRIBUTE', 'OVERWRITE', 'TRANSFORM', 'REDUCE', 'SERDE', 'SERDEPROPERTIES', 'RECORDREADER', 'RECORDWRITER', 'DELIMITED', 'FIELDS', 'TERMINATED', 'COLLECTION', 'ITEMS', 'KEYS', 'ESCAPED', 'LINES', 'SEPARATED', 'FUNCTION', 'EXTENDED', 'REFRESH', 'CLEAR', 'CACHE', 'UNCACHE', 'LAZY', 'FORMATTED', 'GLOBAL', TEMPORARY, 'OPTIONS', 'UNSET', 'TBLPROPERTIES', 'DBPROPERTIES', 'BUCKETS', 'SKEWED', 'STORED', 'DIRECTORIES', 'LOCATION', 'EXCHANGE', 'ARCHIVE', 'UNARCHIVE', 'FILEFORMAT', 'TOUCH', 'COMPACT', 'CONCATENATE', 'CHANGE', 'CASCADE', 'RESTRICT', 'CLUSTERED', 'SORTED', 'PURGE', 'INPUTFORMAT', 'OUTPUTFORMAT', DATABASE, DATABASES, 'DFS', 'TRUNCATE', 'ANALYZE', 'COMPUTE', 'LIST', 'STATISTICS', 'PARTITIONED', 'EXTERNAL', 'DEFINED', 'REVOKE', 'GRANT', 'LOCK', 'UNLOCK', 'MSCK', 'REPAIR', 'RECOVER', 'EXPORT', 'IMPORT', 'LOAD', 'ROLE', 'ROLES', 'COMPACTIONS', 'PRINCIPALS', 'TRANSACTIONS', 'INDEX', 'INDEXES', 'LOCKS', 'OPTION', 'ANTI', 'LOCAL', 'INPATH', IDENTIFIER, BACKQUOTED_IDENTIFIER}(line 1, pos 0)
== SQL ==
"ReturnMessages"
^^^
at org.apache.spark.sql.catalyst.parser.ParseException.withCommand(ParseDriver.scala:241)
at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:117)
at org.apache.spark.sql.execution.SparkSqlParser.parse(SparkSqlParser.scala:48)
at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parseTableIdentifier(ParseDriver.scala:49)
at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:400)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/local/37Pro/files/Partnerdaten.py", line 144, in <module>
dataframe.write.saveAsTable(filename, format="parquet", mode="overwrite")
File "/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 775, in saveAsTable
File "/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 73, in deco
pyspark.sql.utils.ParseException: '\nmismatched input \'"ReturnMessages"\' expecting {\'SELECT\', \'FROM\', \'ADD\', \'AS\', \'ALL\', \'ANY\', \'DISTINCT\', \'WHERE\', \'GROUP\', \'BY\', \'GROUPING\', \'SETS\', \'CUBE\', \'ROLLUP\', \'ORDER\', \'HAVING\', \'LIMIT\', \'AT\', \'OR\', \'AND\', \'IN\', NOT, \'NO\', \'EXISTS\', \'BETWEEN\', \'LIKE\', RLIKE, \'IS\', \'NULL\', \'TRUE\', \'FALSE\', \'NULLS\', \'ASC\', \'DESC\', \'FOR\', \'INTERVAL\', \'CASE\', \'WHEN\', \'THEN\', \'ELSE\', \'END\', \'JOIN\', \'CROSS\', \'OUTER\', \'INNER\', \'LEFT\', \'SEMI\', \'RIGHT\', \'FULL\', \'NATURAL\', \'ON\', \'PIVOT\', \'LATERAL\', \'WINDOW\', \'OVER\', \'PARTITION\', \'RANGE\', \'ROWS\', \'UNBOUNDED\', \'PRECEDING\', \'FOLLOWING\', \'CURRENT\', \'FIRST\', \'AFTER\', \'LAST\', \'ROW\', \'WITH\', \'VALUES\', \'CREATE\', \'TABLE\', \'DIRECTORY\', \'VIEW\', \'REPLACE\', \'INSERT\', \'DELETE\', \'INTO\', \'DESCRIBE\', \'EXPLAIN\', \'FORMAT\', \'LOGICAL\', \'CODEGEN\', \'COST\', \'CAST\', \'SHOW\', \'TABLES\', \'COLUMNS\', \'COLUMN\', \'USE\', \'PARTITIONS\', \'FUNCTIONS\', \'DROP\', \'UNION\', \'EXCEPT\', \'MINUS\', \'INTERSECT\', \'TO\', \'TABLESAMPLE\', \'STRATIFY\', \'ALTER\', \'RENAME\', \'ARRAY\', \'MAP\',
You are not specifying the name of the database in your write statement.
Here is how I would do what you are trying to do:
database_name = "my_database"
prefix_list = ["hive_table_name1","hive_table_name2", "hive_table_name3"]
list1 = ["dataframe_content_1", "dataframe_content_2", "dataframe_content_3"]
for index, l in enumerate(list1):
selecteddata = df.select(l)
#Embedding table name within quotations
tablename = prefix_list[index]
# map to the correct database and table
db_name_and_corresponding_table = f"{database_name}.{tablename}"
# write the "selecteddata" dataframe to hive table
selecteddata.write.mode("overwrite").saveAsTable(db_name_and_corresponding_table)
Hope that helps.
I have a dictionary
{'about': {'advertise.html': True, 'staff.html': True, 'vacancy.html': True},
'articles': {'2017': {'12': {'19': {'900588.html': True}}}},
'columns': {'2016': {'8': {'5': {'825413.html': True}}},
'2017': {'9': {'8': {'886260.html': True}}}},
'culture': {'2012': {'8': {'28': {'595498.html': True}}}},
'economy': {'2013': {'5': {'23': {'633905.html': True}}},
'2017': {'12': {'22': {'900782.html': True}}},
'2018': {'7': {'27': {'934361.html': True},
'28': {"1111111.html"}}}},
'hournews': True
}
It is necessary to write down all the paths on the list.
In this example, it should be like this:
["about","advertise.html"]
["about","staff.html"]
["about", ,"vacancy.html"]
["articles","2017","12","19","900588.html"]
["columns","2016","8","5","825413.html"]
["columns","2017","9","8","886260.html"]
["culture","2012","8","28","595498.html"]
["hournews"]
How can I do that?
my code:
def get_node(path,tree):
for name,val in tree.items():
if type(val) == dict:
path.append(name)
get_node(path,val)
path = path[:-1]
else:
print(path)
get_node([],tree)
it returns me something like this
['redir', '?source=vz_hour_news', 'news', '2018', '7', 'economy', '2018', '7', 'politics', '2018', '7', 'society', '2018', '7', 'world', '2018', '7', 'incidents', '2018', '6', 'opinions', '2018', '7', 'video', '2018', '6', 'photo', '2018', '7', 'vote', 'sport', '2018', '7', 'columns', '2017', '9', 'culture', '2012', '8', 'articles', '2017', '12']
but must return
["redir","?source=vz_hour_news","&id=934685","&vzurl=news/2018/7/29/934685.html"]
["redir","?source=vz_index_author", "&id=934134", "'&vzurl=opinions/2018/7/25/934134.html"]
Here is a solution using a generator: we explore the dict recursively, building the path while going down. Each time we hit a leaf of the structure, we yield the current path.
d = {'about': {'advertise.html': True, 'staff.html': True, 'vacancy.html': True},
'articles': {'2017': {'12': {'19': {'900588.html': True}}}},
'columns': {'2016': {'8': {'5': {'825413.html': True}}},
'2017': {'9': {'8': {'886260.html': True}}}},
'culture': {'2012': {'8': {'28': {'595498.html': True}}}},
'economy': {'2013': {'5': {'23': {'633905.html': True}}},
'2017': {'12': {'22': {'900782.html': True}}},
'2018': {'7': {'27': {'934361.html': True},
'28': {"1111111.html":True}}}},
'hournews': True
}
def paths(d, current_path=None):
if current_path is None:
current_path = []
if isinstance(d, dict):
for key, value in d.items():
yield from paths(value, current_path + [key])
else:
yield current_path
print(list(paths(d)))
#[['about', 'advertise.html'],
# ['about', 'staff.html'],
# ['about', 'vacancy.html'],
# ['articles', '2017', '12', '19', '900588.html'],
# ['columns', '2016', '8', '5', '825413.html'],
# ['columns', '2017', '9', '8', '886260.html'],
# ['culture', '2012', '8', '28', '595498.html'],
# ['economy', '2013', '5', '23', '633905.html'],
# ['economy', '2017', '12', '22', '900782.html'],
# ['economy', '2018', '7', '27', '934361.html'],
# ['economy', '2018', '7', '28', '1111111.html'],
# ['hournews']]
QUAKE_DATA = [
['2017-11-16T18:42:11.676Z', '61.7647', '-153.9615', '0.8', '2.1', 'ml',
'', '', '', '0.64', 'ak', 'ak17253456',
'2017-11-16T18:58:24.707Z', '156km NNW of Redoubt Volcano, Alaska', 'earthquake',
'', '0.2', '', '', 'automatic', 'ak', 'ak'],
['2017-11-16T18:35:00.940Z', '34.1638333', '-116.4253333', '10.17', '1.76', 'ml',
'58', '33', '0.03663', '0.17', 'ci', 'ci37812975',
'2017-11-16T19:14:13.440Z', '6km N of Yucca Valley, CA', 'earthquake',
'0.14', '0.32', '0.18', '50', 'reviewed', 'ci', 'ci'],
['2017-11-16T18:06:15.460Z', '34.0181667', '-116.862', '17.3', '0.9', 'ml',
'23', '108', '0.04811', '0.12', 'ci', 'ci37812967',
'2017-11-16T19:23:12.335Z', '10km N of Banning, CA', 'earthquake',
'0.23', '0.61', '0.068', '13', 'reviewed', 'ci', 'ci'],
['2017-11-16T17:59:31.810Z', '34.1671667', '-116.4225', '10.6', '1.08', 'ml',
'33', '61', '0.03261', '0.17', 'ci', 'ci37812951',
'2017-11-16T18:57:01.554Z', '6km N of Yucca Valley, CA', 'earthquake',
'0.25', '0.37', '0.169', '13', 'reviewed', 'ci', 'ci'],
['2017-11-16T17:47:50.270Z', '37.7361679', '-122.1466675', '4.09', '1.52', 'md',
'12', '126', '0.0248', '0.04', 'nc', 'nc72925680',
'2017-11-16T18:34:02.533Z', '1km NNE of San Leandro, California', 'earthquake',
'0.25', '0.29', '0.13', '8', 'automatic', 'nc', 'nc'],
['2017-11-16T17:44:51.030Z', '37.5636673', '-118.8346634', '1.8', '1.66', 'md',
'16', '196', '0.02668', '0.04', 'nc', 'nc72925675',
'2017-11-16T18:23:03.511Z', '15km SE of Mammoth Lakes, California', 'earthquake',
'0.63', '0.43', '0.25', '13', 'automatic', 'nc', 'nc'],
['2017-11-16T17:34:22.310Z', '33.9796667', '-118.782', '14.78', '2.47', 'ml',
'41', '97', '0.06482', '0.25', 'ci', 'ci37812839',
'2017-11-16T19:11:53.824Z', '4km SE of Malibu, CA', 'earthquake',
'0.36', '0.68', '0.13', '94', 'reviewed', 'ci', 'ci']
]
for data in QUAKE_DATA:
print (data[0])
result I am getting:
2017-11-16T18:42:11.676Z
2017-11-16T18:35:00.940Z
2017-11-16T18:06:15.460Z
2017-11-16T17:59:31.810Z
2017-11-16T17:47:50.270Z
2017-11-16T17:44:51.030Z
2017-11-16T17:34:22.310Z
If you want the first element from the first sub-list, just take the first sub-list with:
QUAKE_DATA[0]
and then take the first element from that sub-list by indexing again:
QUAKE_DATA[0][0]
Simple as that, giving:
'2017-11-16T18:42:11.676Z'
There is no need for a for-loop as you just want to get one element which you can index directly. As it is, you are looping through every list in QUAKE_DATA and printing the first item from that list.