Related
Whole-program compilers like MLton create optimized binaries in part to their ability to use the total source of the binary to perform partial evaluation: aggressively inlining constants and evaluating them until stuck—all during compilation!
This has been explored public ally a bit in the Haskell space by Gabriel Gonzalez's Morte.
Now my understanding is that Haskell does not do very much of this—if any at all. The cited reason I understand is that it is antithetical to separate compilation. This makes sense to prohibit partial evaluation across source-file boundaries, but it seems like in-file partial evaluation would still be an option.
As far as I know, in-file partial evaluation is still not performed, though.
My question is: is this true? If so, what are the tradeoffs for performing in-file partial evaluation? If not, what is an example file where one can improve compiled performance by putting more functionality into the same file?
(Edit: To clarify the above, I know there are a lot of questions as to what the best set of reductions to perform are—many are undecidable! I'd like to know the tradeoffs made in an "industrial strength" compiler with separate compilation that live at a level above choosing the right equational theory if there are any interesting things to talk about there. Things like compilation speed or file bloat are more toward the scope I'm interested in. Another question in the same space might be: "Why can't MLton get separate compilation just by compiling each module separately, leaving the API exposed, and then linking them all together?")
This is definitely an optimization that a small set of people are interested in and are pursuing. The Google search term to find information on it is "supercompilation". I believe there are at least two approaches floating about at the moment.
It seems one of the big tradeoffs is compilation-time resources (time and memory both), and at the moment the performance wins of paying these costs appear to be somewhat unpredictable. There's quite some work left. A few links:
A page on the GHC wiki
Neil Mitchell's Supero
Max Bolingbroke's Supercompilation by evaluation
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I've realised that my greatest weakness as a programming student is my poor ability to comprehend other people's code.
I have no trouble whatsoever with 'textbook' code, or clearly-commented code, but when given a program of a few hundred lines, containing a dozen or so different functions and no comments, I find it very difficult to even begin.
I know this type of code is what I'm probably more likely to encounter in my career, and I think that having poor code comprehension skills is going to be a great hindrance to me, so I'd like to focus on improving my skills in this area.
What tools/techniques have helped improve code comprehension in your experience?
How do you tend to tackle unfamiliar, uncommented code? Why? What about your technique do you find helpful?
Thanks
Familiarizing yourself with foreign code
If the codebase is small enough, you can start reading it straight away. At some point the pieces will start falling together.
In this scenario, "small enough" varies, it will get larger as your experience increases. You will also start benefiting from "cheating" here: you can skip over pieces of code that you recognize from experience as "implementing pattern X".
You may find it helpful to make small detours while reading the code, e.g. by looking up a function as you see it being called, then spend a little time glancing over it. Do not stay on these detours until you understand what the called function does; this is not the point, and it will make you feel like you are jumping around and making no progress. The goal when detouring is to understand what the new function does in less than half a minute. If you cannot, it means that the function is too complicated. Abort the detour and accept the fact that you will have to understand your "current" function without this extra help.
If the codebase is too large, you can't just start reading it. In this case, you can start by identifying the logical components of the program at a high level of abstraction. Your goal is to associate types (classes) in the source code with these components, and then identify the role each class plays in its component. There will be classes used internally in a component and classes used to communicate with other components or frameworks. Divide and conquer here: first split the classes into related groups, then focus on a group and understand how its pieces fit together.
To help you in this task, you can use the source code's structure as a guide (not as the ultimate law; it can be misleading at times due to human error). You can also use tools such as "find usages" of a function or type to see where each one is referenced. Again, do not try to fully digest what the IDE tells you if you can't do it reasonably quickly. When this happens, it means you picked a complicated piece of metal out of a machine you don't quite understand. Put it back and try something else until you find something that you can understand.
Debugging foreign code
This is another matter entirely. I will cheat a little by saying that, until you amass tons of experience, there is no way you will be debugging code successfully as long as it is foreign to you.
I find that drawing the call-graph and inheritance trees out often works for me. You can use any tool you have handy; I usually just use a whiteboard.
Usually, the code units/functions are easy enough to understand on their own, and I can see plainly how each unit operates, but I often times have trouble seeing the bigger picture, and that's where the breakdown happens and I get this "I'm lost" feeling.
Start small. Say to yourself: "I want to accomplish x, so how is it done in the code?" where x is some small operation that you can trace. Then, just trace the code, making something visual that you can look back on after the trace.
Then, pick another x and repeat the process. You should get a better feel for the code every time you do this.
When it comes time to implement something, choose something that is similar (but not almost identical) to one of the things you traced. By doing this, you go from a trace-level understanding to an implementation-level understanding.
It also helps to talk to the person who wrote the code the first time.
The first thing I try and do is figure out what the purpose of the code is at a high-level -- the detail's kind of irrelevant until you understand a bit about the problem domain. Good ways to figure that out include looking at the names of the identifiers, but it's usually even more helpful to consider the context -- where did you get this code? Who wrote it? Was it part of some application with a known purpose? Once you've figured out what the code's supposed to do, you can make a copy and start reformatting it to make it easier for you personally to understand. That can include changing the names of identifiers where necessary, sorting out any weird indentation, adding whitespace to break things up, commenting bits once you've figured out what they do, etc. That's a start, at any rate... :)
Also -- once you've figured out the purpose of the code, stepping it through a debugger on some simple examples can also sometimes give you a clearer idea of what's going on FWIW...
I understand your frustration, but keep in mind that there is a lot of bad code out there, so keep your chin-up. not all code is bad :)
this is the process that I tend to follow:
look for any unit tests as they should document what the code is supposed to do...
navigate through the code using code rush / resharper / visual studio shortcuts - this should give you some ideas about the logical and physical tiers involved...
scan the code first, looking for common patterns, naming conventions, and code styles - this should give you insight into the teams standards and maybe the original coders mind set...
as I navigate through the code heirarchy I make a note of the the objects being used... typically with pen & paper drawing a simple activity diagram :
I tend to start from a common entry point, so if it is a UI, start from the view and work your way through to the data access code, if its a service start from the service boundary and work your way through to the data access code...
look for code that could be refactored - if you can see code that can be refactored, you have learned how to simplify it without changing its behavior...
practice building the same thing that you are reviewing, but in a different way...
as you read through untested code, think of ways to make it testable...
use code rush diagnostics tools to find methods that are of high maintenance complexity or cyclomatic complexity and pay special attention to these areas because chances are, this is where the most bugs are...
Good luck
Understand is a terrific code analysis tool. It was in wide use at my previous employer (L-3) so I purchased it where I currently work.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
My team is building a product that has a lot of components that rely on each other. For example, whenever we add a new type of data to the system, we also have to add logging code to track the changes that use that data type. Or, when we add a new UI screen, we have to make sure that its strings are externalized so they can be translated. These things slow down almost every task we do, and sometimes one of the the steps gets forgotten.
The traditional way to handle this problem is to add required checklists and documentation and things like that. How do Agile methodologies handle it?
The design you describe sounds like it might be a little too tightly-coupled. A renewed focus on enterprise patterns (such as Inversion of Control, programming to interfaces, etc) could help a lot.
If you are doing pair programming, you should be checking each other's work, making sure all of the i's are dotted and the t's are crossed.
If you are doing Test Driven Development, your tests should not be passing until all requirements for that particular portion of the development effort are satisfied.
If you are developing a large, complex system, you need experienced developers who understand the design and development process. You may also need a hands-on (read:coding) architect who can oversee the whole process.
Oh, and checklists (despite their traditional nature) are good too.
I'd suggest reading Alistair Cockburn's "”Agile Software Development: The Cooperative Game" - he takes quite an intelligent approach to Agile that's largely "do what gets the job done". That might help you work out how to get some kind of checklist / documentation into what you're doing without making everything horribly top-heavy.
Could some of your problems be solved by better tests? When you talked about not doing things that need to be done, my first thought was "why hasn't a test failed?" Maybe you need to look at tools for testing user interfaces? (edit: or even some small script on commit that greps code for whatever indicates the need for translation strings and checks against the files with the translations in?)
Also, can you change your design so that it's both less coupled and "forces" you to do the right thing. Perhaps making those data types implement a logging interface that the logger delegates to, or similar...?
Depending on your IDE there are various tools to help identify strings that need to be externalized, but if you are in a habit of just not putting in static strings this can be avoided.
If you need to add logging I would suggest AOP, as, at some point you will want to remove the logging code and you risk breaking the application.
But, a long-term, complex system is ideal for agile development, as, while you are developing, the needs of the client/customer may change, and you can adapt to it.
You need to ensure that the customer has feedback on a regular basis (ideally daily, and in a perfect system the customer has a rep sitting by for questions).
When I have many steps that must be done, esp for something like datatypes, I will resort to using a spreadsheet, so, you add a datatype, you add a row to the spreadsheet. Then you can track everything that needs to be done before that datatype is completely added to the application.
Have cross-component teams. That way when you add some functionality, the member(s) from the logging component will update their part and the translator(s) will update the strings.
I think it is important to understand that Agile methodology is only a process framework, not a process in itself. For example it says to follow test driven development and do pair programming but it does not say how to write the tests, or suggest a review checklist or suggest a coding guideline or say what documents to write. Those parts are entirely upto you or your organization to define and follow.
When planning a feature, you can add a engineering task called "review" and allot time for it. You could do the review task in whatever way works best for you and your organization. If pair programming doesn't work as well as a formal inspection for you, you should do formal inspections.
Do what needs to be done, but not more:
better definition of done (the definition of done is a kind of checklist to me),
better testing,
"just enough" documentation (Agile != no documentation),
etc.
Well, where I work we have QA that can catch some of the bugs if there are missing requirements or something slips through. I'm not saying the development team is intentionally putting in bugs, but as a codebase grows, it becomes harder and harder to remain nimble and thorough in checking everything.
Wikis can be useful for capturing methods used to try to get the clearest requirements. By clear I mean that the story card isn't likely to list all the requirements and that there may be discussions with an end-user or business analyst to get their understanding of what is desired. Part of our sign-offs involve getting an end-user to see the functionality and approve it before moving from the development environment.
Once every handful of sprints, we may have most of a sprint devoted to bug fixing/refactoring so that things can be cleaned up that would otherwise not get done as they aren't likely to be important. This can be cosmetic bugs or broken windows that while they have little business value initially can be useful in the long run.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
I had a piece of work thrown out due to a single minor spec change that turned out not to have been spec'ed correctly. If it had been done right at the start of the project then most of that work would have never have been needed in the first place.
What are some good tips/design principles that keep these things from happening?
Or to lessen the amount of re-working to code that is needed in order to implement feature requests or design changes mid implementation?
Modularize. Make small blocks of code that do their job well. However, thats only the beginning. Its usually a large combination of factors that contribute to code so bad it needs a complete rework. Everything from highly unstable requirements, poor design, lack of code ownership, the list goes on and on.
Adding on to what others have brought up: COMMUNICATION.
Communication between you and the customer, you and management, you and the other developers, you and your QA department, communication between everyone is key. Make sure management understands reasonable timeframes and make sure both you and the customer understand exactly what it is that your building.
Take the time to keep communication open with the customer that your building the product for. Make milestones and setup a time to display the project to the customer at each milestone. Even if the customer is completely disappointed with a milestone when you show it, you can scratch what you have and start over from the last milestone. This also requires that your work be built in blocks that work independent of one another as Csunwold stated.
Points...
Keep open communication
Be open and honest with progress of product
Be willing to change daily as to the needs of the customers business and specifications for the product change.
Software requirements change, and there's not much one can do about that except for more frequent interaction with clients.
One can, however, build code that is more robust in face of change. It won't save you from throwing out code that meets a requirement that nobody needs anymore, but it can reduce the impact of such changes.
For example, whenever this applies, use interfaces rather than classes (or the equivalent in your language), and avoid adding operations to the interface unless you are absolutely sure you need them. By building your programs that way you are less likely to rely on knowledge of a specific implementation, and you're less likely to implement things that you would not need.
Another advantage of this approach is that you can easily swap one implementation for another. For example, it sometimes pays off to write the dumbest (in efficiency) but the fastest to write and test implementation for your prototype, and only replace it with something smarter in the end when the prototype is the basis of the product and the performance actually matters. I find that this is a very effective way to avoid premature optimizations, and thus throwing away stuff.
modularity is the answer, as has been said. but it can be a hard answer to use in practice.
i suggest focussing on:
small libraries which do predefined things well
minimal dependencies between modules
writing interfaces first is a good way to achieve both of these (with interfaces used for the dependencies). writing tests next, against the interfaces, before the code is written, often highlights design choices which are un-modular.
i don't know whether your app is UI-intensive; that can make it more difficult to be modular. it's still usually worth the effort, but if not then assume that it will be thrown away before long and follow the iceberg principle, that 90% of the work is not tied to the UI and so easier to keep modular.
finally, i recommend "the pragmatic programmer" by andrew hunt and dave thomas as full of tips. my personal favourite is DRY -- "don't repeat yourself" -- any code which says the same thing twice smells.
iterate small
iterate often
test between iterations
get a simple working product out asap so the client can give input.
Basically assume stuff WILL get thrown out, so code appropriately, and don't get far enough into something that having it be thrown out costs a lot of time.
G'day,
Looking through the other answers here I notice that everyone is mentioning what to do for your next project.
One thing that seems to be missing though is having a washup to find out why the spec. was out of sync. with the actual requirements needed by the customer.
I'm just worried that if you don't do this, no matter what approach you are taking to implementing your next project, if you've still got that mismatch between actual requirements and the spec. for your next project then you'll once again be in the same situation.
It might be something as simple as bad communication or maybe customer requirement creep.
But at least if you know the cause and you can try and help minimise the chances of it happening again.
Not knocking what other answers are saying and there's some great stuff there, but please learn from what happened so that you're not condemned to repeat it.
HTH
cheers,
Sometimes a rewrite is the best solution!
If you are writing software for a camera, you could assume that the next version will also do video, or stereo video or 3d laser scanning and include all hooks for all this functionality, or you could write such a versatile extensible astronaut architecture that it could cope with the next camera including jet engines - but it will cost so much in money, resources and performance that you might have been better off not doing it.
A complete rewrite for new functionality in a new role isn't always a bad idea.
Like csunwold said, modularizing your code is very important. Write it so that if one piece falls prone to errors, it doesn't muck up the rest of the system. This way, you can debug a single buggy section while being able to safely rely on the rest.
Beyond this, documentation is key. If your code is neatly and clearly annotated, reworking it in the future will be infinitely easier for you or whoever happens to be debugging.
Using source control can be helpful too. If you find a piece of code doesn't work properly, there's always the opportunity to revert back to a past robust iteration.
Although it doesn't directly apply to your example, when writing code I try to keep an eye out for ways in which I can see the software evolving in the future.
Basically I try to anticipate where the software will go, but critically, I resist the temptation to implement any of the things I can imagine happening. All I am after is trying to make the APIs and interfaces support possible futures without implementing those features yet, in the hope that these 'possible scenarios' help me come up with a better and more future-proof interface.
Doesn't always work ofcourse.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 2 years ago.
Improve this question
A couple of years ago the media was rife with all sorts of articles on
how the idea of code reuse was a simple way to improve productivity
and code quality.
From the blogs and sites I check on a regular basis it seems as though
the idea of "code reuse" has gone out of fashion. Perhaps the 'code
reuse' advocates have all joined the SOA crowd instead? :-)
Interestingly enough, when you search for 'code reuse' in Google the
second result is titled:
"Internal Code Reuse Considered Dangerous"!
To me the idea of code reuse is just common sense, after all look at
the success of the apache commons project!
What I want to know is:
Do you or your company try and reuse code?
If so how and at what level, i.e. low level api, components or
shared business logic? How do you or your company reuse code?
Does it work?
Discuss?
I am fully aware that there are many open source libs available and that anyone who has used .NET or the Java has reused code in some form. That is common sense!
I was referring more to code reuse within an organizations rather than across a community via a shared lib etc.
I originally asked;
Do you or your company try and reuse code?
If so how and at what level, i.e. low level api, components or shared business logic? How do you or your company reuse code?
From where I sit I see very few example of companies trying to reuse code internally?
If you have a piece of code which could potentially be shared across a medium size organization how would you go about informing other members of the company that this lib/api/etc existed and could be of benefit?
The title of the article you are referring to is misleading, and is actually a very good read. Code reuse is very beneficial, but there are downsides with everything. Basically, if I remember correctly, the gist of the article is that you are sealing the code in a black box and not revisiting it, so as the original developers leave you lose the knowledge. While I see the point, I don't necessarily agree with it - at least not to a "sky is falling" regard.
We actually group code reuse into more than just reusable classes, we look at the entire enterprise. Things that are more like framework enhancement or address cross-cutting concerns are put into a development framework that all of our applications use (think things like pre- and post-validation, logging, etc.). We also have business logic that is applicable to more than one application, so those sort of things get moved to a BAL core that is accessible anywhere.
I think that the important thing is not to promote things for reuse if they are not going to really be reused. They should be well documented, so that new developers can have a resource to help them come up to speed, as well. Chances are, if the knowledge isn't shared, the code will eventually be reinvented somewhere else and will lead to duplication if you are not rigorous in documentation and knowledge sharing.
We reuse code - in fact, our developers specifically write code that can be reused in other projects. This has paid off quite nicely - we're able to start new projects quickly, and we iteratively harden our core libraries.
But one can't just write code and expect it to be re-used; code reuse requires communication among team members and other users so people know what code is available, and how to use it.
The following things are needed for code reuse to work effectively:
The code or library itself
Demand for the code across multiple projects or efforts
Communication of the code's features/capabilities
Instructions on how to use the code
A commitment to maintaining and improving the code over time
Code reuse is essential. I find that it also forces me to generalize as much as possible, also making code more adaptable to varying situations. Ideally, almost every lower level library you write should be able to adapt to a new set of requirements for a different application.
I think code reuse is being done through open source projects for the most part. Anything that can be reused or extended is being done via libraries. Java has an amazing number of open source libraries available for doing a large number of things. Compare that to C++, and how early on everything would have to be implemented from scratch using MFC or the Win32 API.
We reuse code.
On a small scale we try to avoid code duplication as much as posible. And we have a complete library with a lot of frequently used code.
Normally code is developed for one application. And if it is generic enough, it is promoted to the library. This works excelent.
The idea of code reuse is no longer a novel idea...hence the apparent lack of interest. But it is still very much a good idea. The entire .NET framework and the Java API are good examples of code reuse in action.
We have grown accustomed to developing OO libraries of code for our projects and reusing them in other projects. Its a part of the natural life cycle of an idea. It is hotly debated for a while and then everyone accepts and there is no reason for further discussion.
Of course we reuse code.
There are a near infinite amount of packages, libraries and shared objects available for all languages, with whole communities of developers behing them supporting and updating.
I think the lack of "media attention" is due to the fact that everyone is doing it, so it's no longer worth writing about. I don't hear as many people raising awareness of Object-Oriented Programming and Unit Testing as I used to either. Everyone is already aware of these concepts (whether they use them or not).
Level of media attention to an issue has little to do with its importance, whether we're talking software development or politics! It's important to avoid wasting development effort by reinventing (or re-maintaining!) the wheel, but this is so well-known by now that an editor probably isn't going to get excited by another article on the subject.
Rather than looking at the number of current articles and blog posts as a measure of importance (or urgency) look at the concepts and buzz-phrases that have become classics or entered the jargon (another form of reuse!) For example, Google for uses of the DRY acronym for good discussion on the many forms of redundancy that can be eliminated in software and development processes.
There's also a role for mature judgment regarding costs of reuse vs. where the benefits are achieved. Some writers advocate waiting to worry about reuse until a second or third use actually emerges, rather than spending effort to generalize bit of code the first time it is written.
My personal view, based on the practise in my company:
Do you or your company try and reuse code?
Obviously, if we have another piece of code that already fits our needs we will reuse it. We don't go out of our way to use square pegs in round holes though.
If so how and at what level, i.e. low level api, components or shared business logic? How do you or your company reuse code?
At every level. It is written into our coding standards that developers should always assume their code will be reused - even if in reality that is highly unlikely. See below
If your OO model is good, your API probably reflects your business domain, so reusable classes probably equates to reusable business logic without additional effort.
For actual reuse, one key point is knowing what code is already available. We resolve this by having everything documented in a central location. We just need a little discipline to ensure that the documentation is up-to-date and searchable in a meaningful way.
Does it work?
Yes, but not because of the potential or actual reuse! In reality, beyond a few core libraries and UI components, there isn't a large amount of reuse.
In my personal opinion, the real value is in making the code reusable. In doing so, aside from a hopefully cleaner API, the code will (a) be documented sufficiently for another developer to use it without trawling the source code, and (b) it will also be replaceable. These points are a great benefit to on-going software maintenance.
Do you or your company try and reuse code? If so how and at what
level, i.e. low level api, components or shared business logic? How do
you or your company reuse code?
I used to work in a codebase with uber code reuse, but it was difficult to maintain because the reused code was unstable. It was prone to design changes and deprecation in ways that cascaded to everything using it. Before that I worked in a codebase with no code reuse where the seniors actually encouraged copying and pasting as a way to reuse even application-specific code, so I got to see the two extremities and I have to say that one isn't necessarily much better than the other when taken to the extremes.
And I used to be an uber bottom-up kind of programmer. You ask me to build something specific and I end up building generalized tools. Then using those tools, I build more complex generalized tools, then start building DIP abstractions to express the design requirements for the lower-level tools, then I build even more complex tools and repeat, and at some point I start writing code that actually does what you want me to do. And as counter-productive as that sounded, I was pretty fast at it and could ship complex products in ways that really surprised people.
Problem was the maintenance over the months, years! After I built layers and layers of these generalized libraries and reused the hell out of them, each one wanted to serve a much greater purpose than what you asked me to do. Each layer wanted to solve the world's hunger needs. So each one was very ambitious: a math library that wants to be amazing and solve the world's hunger needs. Then something built on top of the math library like a geometry library that wants to be amazing and solve the world's hunger needs. You know something's wrong when you're trying to ship a product but your mind is mulling over how well your uber-generalized geometry library works for rendering and modeling when you're supposed to be working on animation because the animation code you're working on needs a few new geometry functions.
Balancing Everyone's Needs
I found in designing these uber-generalized libraries that I had to become obsessed with the needs of every single team member, and I had to learn how raytracing worked, how fluids dynamics worked, how the mesh engine worked, how inverse kinematics worked, how character animation worked, etc. etc. etc. I had to learn how to do pretty much everyone's job on the team because I was balancing all of their specific needs in the design of these uber generalized libraries I left behind while walking a tightrope balancing act of design compromises from all the code reuse (trying to make things better for Bob working on raytracing who is using one of the libraries but without hurting John too much who is working on physics who is also using it but without complicating the design of the library too much to make them both happy).
It got to a point where I was trying to parametrize bounding boxes with policy classes so that they could be stored either as center and half-size as one person wanted or min/max extents as someone else wanted, and the implementation was getting convoluted really fast trying to frantically keep up with everyone's needs.
Design By Committee
And because each layer was trying to serve such a wide range of needs (much wider than we actually needed), they found many reasons to require design changes, sometimes by committee-requested designs (which are usually kind of gross). And then those design changes would cascade upwards and affect all the higher-level code using it, and maintenance of such code started to become a real PITA.
I think you can potentially share more code in a like-minded team. Ours wasn't like-minded at all. These are not real names but I'd have Bill here who is a high-level GUI programmer and scripter who creates nice user-end designs but questionable code with lots of hacks, but it tends to be okay for that type of code. I got Bob here who is an old timer who has been programming since the punch card era who likes to write 10,000 line functions with gotos in them and still doesn't get the point of object-oriented programming. I got Joe here who is like a mathematical wizard but writes code no one else can understand and always make suggestions which are mathematically aligned but not necessarily so efficient from a computational standpoint. Then I got Mike here who is in outer space who wants us to port the software to iPhones and thinks we should all follow Apple's conventions and engineering standards.
Trying to satisfy everyone's needs here while coming up with a decent design was, probably in retrospect, impossible. And in everyone trying to share each other's code, I think we became counter-productive. Each person was competent in an area but trying to come up with designs and standards which everyone is happy with just lead to all kinds of instability and slowed everyone down.
Trade-Offs
So these days I've found the balance is to avoid code reuse for the lowest-level things. I use a top-down approach from the mid-level, perhaps (something not too far divorced from what you asked me to do), and build some independent library there which I can still do in a short amount of time, but the library doesn't intend to produce mini-libs that try to solve the world's hunger needs. Usually such libraries are a little more narrow in purpose than the lower-level ones (ex: a physics library as opposed to a generalized geometry-intersection library).
YMMV, but if there's anything I've learned over the years in the hardest ways possible, it's that there might be a balancing act and a point where we might want to deliberately avoid code reuse in a team setting at some granular level, abandoning some generality for the lowest-level code in favor of decoupling, having malleable code we can better shape to serve more specific rather than generalized needs, and so forth -- maybe even just letting everyone have a little more freedom to do things their own way. But of course all of this is with the aim of still producing a very reusable, generalized library, but the difference is that the library might not decompose into the teeniest generalized libraries, because I found that crossing a certain threshold and trying to make too many teeny, generalized libraries starts to actually become an extremely counter-productive endeavor in the long term -- not in the short term, but in the long run and broad scheme of things.
If you have a piece of code which could potentially be shared across a
medium size organization how would you go about informing other
members of the company that this lib/api/etc existed and could be of
benefit?
I actually am more reluctant these days and find it more forgivable if colleagues do some redundant work because I would want to make sure that code does something fairly useful and non-trivial and is also really well-tested and designed before I try to share it with people and accumulate a bunch of dependencies to it. The design should have very, very few reasons to require any changes from that point onwards if I share it with the rest of the team.
Otherwise it could cause more grief than it actually saves.
I used to be so intolerant of redundancy (in code or efforts) because it appeared to translate to a product that was very buggy and explosive in memory use. But I zoomed in too much on redundancy as the key problem, when really the real problem was poor quality, hastily-written code, and a lack of solid testing. Well-tested, reliable, efficient code wouldn't suffer that problem to nearly as great of a degree even if some people duplicate, say, some math functions here and there.
One of the common sense things to look at and remember that I didn't at the time is how we don't mind some redundancy when we use a very solid third party library. Chances are that you guys use a third party library or two that has some redundant work with what your team is doing. But we don't mind in those cases because the third party library is great and well-tested. I recommend applying that same mindset to your own internal code. The goal should be to create something awesome and well-tested, not to fuss over a little bit of redundancy here and there as I mistakenly did long ago.
So these days I've shifted my intolerance towards a lack of testing instead. Instead of getting upset over redundant efforts, I find it much more productive to get upset over other people's lack of unit and integration testing! :-D
While I think code reuse is valuable, I can see where this sentiment is rooted. I've worked on a lot of projects where much extra care was taken to create re-usable code that was then never reused. Of course reuse is much preferable to duplicate code, but I have seen a lot of very extenisve object models created with the goal of using the objects across the enterprise in multiple projects (kind of the way the same service in SOA can be used in different apps) but have never seen the objects actually used more than once. Maybe I just haven't been part of organizations taking good advantage of the principle of reuse.
The two software projects I've worked on have both been long term development. One is about 10 years old, the other has been around for over 30 years, rewritten in a couple versions of Fortran along the way. Both make extensive reuse of code, but both rely very little on external tools or code libraries. DRY is a big mantra on the newer project, which is in C++ and lends itself more easily to doing that in practice.
Maybe the better question is when do we NOT reuse code these days? We are either in a state on building using someone elses observed "best practices" or prediscovered "design patterns" or just actually building on legacy code, libraries, or copying.
It seems the degree to which code A is reused to make code B is often based around how much the ideas in code A taken to code B are abstracted into design patterns/idioms/books/fleeting thoughts/actual code/libraries. The hard part is in applying all those good ideas to your actual code.
Non-technical types get overzealous about the reuse thing. They don't understand why everything can't be copy-pasted. They don't understand why the greemelfarm needs a special adapter to communicate the same information that it used to to the old system to the new system, and that, unfortunately we can't change either due to a bazillion other reasons.
I think techies have been reusing from day 1 in the same way musicians have been reusing from day 1. Its an ongoing organic evolution and sythesis that will keep ongoing.
Code reuse is an extremely important issue - where code is not reused, projects take longer and are harder for new team members to get into.
However, writing reusable code takes longer.
Personally, I try to write all my code in a reusable way, this takes longer, but it results in the fact that most of my code has become official infrastructures in my organization and that new projects based on these infrastructures take significantly less time.
The danger in reusing code, is if the reused code is not written as an infrastructure - in a general and encapsulated manner with as few as possible assumptions and as much as possible documentation and unit testing, that the code can end up doing unexpected things.
Also, if bugs are found and fixed, or features added, these changes are rarely returned to the source code, resulting in different versions of the reused code, that no one knows of or understands.
The solution is:
1. To design and write the code with not only one project in mind, but to think of future requirements and try to make the design flexible enough to cover them with minimal code change.
2. To enclose the code within libraries that are to be used as-is and not modified within using projects.
3. To allow users to view and modify the code of of the library withing its solution (not within the using project's solution).
4. To design future projects to be based on the existing infrastructures, making changes to the infrastructures as necessary.
5. To charge maintaining the infrastructure to all projects, thus keeping the infrastructure funded.
Maven has solved code reuse. I'm completely serious.