What are smart data sources in spark? - apache-spark

I wanted to know what data sources can be called 'smart' in spark. As per book "Mastering Apache Spark 2.x", any data source can be called smart if spark can process data at data source side. Example JDBC sources.
I want to know if MongoDB, Cassandra and parquet could be considered as smart data sources as well?

I believe smart data sources can be those as well. At least according to slides 41 to 42 you can see mention of smart data sources and logos including those sources (note that mongodb logo isn't there but I believe it supports the same thing https://www.mongodb.com/products/spark-connector, see section "Leverage the Power of MongoDB") from the Databricks presentation here: https://www.slideshare.net/databricks/bdtc2
I was also able to find some information supporting that MongoDB is a smart data source, since it's used as an example in the "Mastering Apache Spark 2.x" book:
"Predicate push-down on smart data sources Smart data sources are those that support data processing directly in their own engine-where the data resides--by preventing unnecessary data to be sent to Apache Spark.
On example is a relational SQL database with a smart data source. Consider a table with three columns: column1, column2, and column3, where the third column contains a timestamp. In addition, consider an ApacheSparkSQL query using this JDBC data source but only accessing a subset of columns and rows based using projection and selection. The following SQL query is an example of such a task:
select column2,column3 from tab where column3>1418812500
Running on a smart data source, data locality is made use of by letting the SQL database do the filtering of rows based on timestamp and removal of column1. Let's have a look at a practical example on how this is implemented in the Apache Spark MongoDB connector"

Related

Cassandra 3.7 CDC / incremental data load

I'm very new to the ETL world and I wish to implement Incremental Data Loading with Cassandra 3.7 and Spark. I'm aware that later versions of Cassandra do support CDC, but I can only use Cassandra 3.7. Is there a method through which I can track the changed records only and use spark to load them, thereby performing incremental data loading?
If it can't be done on the cassandra end, any other suggestions are also welcome on the Spark side :)
It's quite a broad topic, and efficient solution will depend on the amount of data in your tables, table structure, how data is inserted/updated, etc. Also, specific solution may depend on the version of Spark available. One downside of Spark-only method is you can't easily detect deletes of the data, without having a complete copy of previous state, so you can generate a diff between 2 states.
In all cases you'll need to perform full table scan to find changed entries, but if your table is organized specifically for this task, you can avoid reading of all data. For example, if you have a table with following structure:
create table test.tbl (
pk int,
ts timestamp,
v1 ...,
v2 ...,
primary key(pk, ts));
then if you do following query:
import org.apache.spark.sql.cassandra._
val data = spark.read.cassandraFormat("tbl", "test").load()
val filtered = data.filter("""ts >= cast('2019-03-10T14:41:34.373+0000' as timestamp)
AND ts <= cast('2019-03-10T19:01:56.316+0000' as timestamp)""")
then Spark Cassandra Connector will push this query down to the Cassandra, and will read only data where ts is in the given time range - you can check this by executing filtered.explain and checking that both time filters are marked with * symbol.
Another way to detect changes is to retrieve the write time from Cassandra, and filter out the changes based on that information. Fetching of writetime is supported in RDD API for all recent versions of SCC, and is supported in the Dataframe API since release of SCC 2.5.0 (requires at least Spark 2.4, although may work with 2.3 as well). After fetching this information, you can apply filters on the data & extract changes. But you need to keep in mind several things:
there is no way to detect deletes using this method
write time information exists only for regular & static columns, but not for columns of primary key
each column may have its own write time value, in case if there was a partial update of the row after insertion
in most versions of Cassandra, call of writetime function will generate error when it's done for collection column (list/map/set), and will/may return null for column with user-defined type
P.S. Even if you had CDC enabled, it's not a trivial task to use it correctly:
you need to de-duplicate changes - you have RF copies of the changes
some changes could be lost, for example, when node was down, and then propagated later, via hints or repairs
TTL isn't easy to handle
...
For CDC you may look for presentations from 2019th DataStax Accelerate conference - there were several talks on that topic.

Is Presto is a data store for storing data?

I am new to work on Presto. I have some doubts regarding Presto.
Whether Presto is a data store(database)?
If it is a query engine ? Whether there is any common query syntax for accessing Hive, SQL, Cassandra data using connectors or it will accept all data source queries based on connectors ?
Where the query execution will takes place in Presto or in connected data source end?
It is a query engine. However it accesses data from many different data sources.
Yes. It is ANSI SQL. When accessing data from underlying data source then it's specific interface is used (thrift, hdfs, jdbc etc), but this is hidden from the user.
In both places. Presto is capable to push down some data filtering down to underlying data source (projection, where clauses). There is current effort to also push more parts of SQL query (see https://github.com/prestosql/presto/issues/18). Rest is evaluated in Presto.

Synchronize data lake with the deleted record

I am building data lake to integrate multiple data sources for advanced analytics.
In the begining, I select HDFS as data lake storage. But I have a requirement for updates and deletes in data sources which I have to synchronise with data lake.
To understand the immutable nature of Data Lake I will consider LastModifiedDate from Data source to detect that this record is updated and insert this record in Data Lake with a current date. The idea is to select the record with max(date).
However, I am not able to understand how
I will detect deleted records from sources and what I will do with Data Lake?
Should I use other data storage like Cassandra and execute a delete command? I am afraid it will lose the immutable property.
can you please suggest me good practice for this situation?
1. Question - Detecting deleted records from datasources
Detecting deleted records from data sources, requires that your data sources supports this. Best is that deletion is only done logically, e. g. with a change flag. For some databases it is possible to track also deleted rows (see for example for SQL-Server). Also some ETL solutions like Informatica offer CDC (Changed Data Capture) capabilities.
2. Question - Changed data handling in a big data solution
There are different approaches. Of cause you can use a key value store adding some kind of complexity to the overall solution. First you have to clarify, if it is also of interest to track changes and deletes. You could consider loading all data (new/changed/deleted) into daily partitions and finally build an actual image (data as it is in your data source). Also consider solutions like Databricks Delta addressing this topics, without the need of an additional store. For example you are able to do an upsert on parquet files with delta as follows:
MERGE INTO events
USING updates
ON events.eventId = updates.eventId
WHEN MATCHED THEN
UPDATE SET
events.data = updates.data
WHEN NOT MATCHED
THEN INSERT (date, eventId, data) VALUES (date, eventId, data)
If your solution also requires low latency access via a key (e. g. to support an API) then a key-values store like HBase, Cassandra, etc. would be helpfull.
Usually this is always a constraint while creating datalake in Hadoop, one can't just update or delete records in it. There is one approach that you can try is
When you are adding lastModifiedDate, you can also add one more column naming status. If a record is deleted, mark the status as Deleted. So the next time, when you want to query the latest active records, you will be able to filter it out.
You can also use cassandra or Hbase (any nosql database), if you are performing ACID operations on a daily basis. If not, first approach would be your ideal choice for creating datalake in Hadoop

Custom Data Types for DataFrame columns when using Spark JDBC

I know I can use a custom dialect for having a correct mapping between my db and spark but how can I create a custom table schema with specific field data types and lengths when I use spark's jdbc.write options? I would like to have granular control over my table schemas when I load a table from spark.
There is a minimal flexibility for writes, implemented by
SPARK-10101 - Spark JDBC writer mapping String to TEXT or VARCHAR
SPARK-10849 - Allow user to specify database column type for data frame fields when writing data to jdbc data sources
but if you want
to have granular control over my table schemas when I load a table from spark.
you might have to implement your own JdbcDialect. It is internal developer API and as far as I can tell it is not plugable so you may need customized Spark binaries (it might be possible to registerDialect but I haven't tried this).
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
You can use the createTableColumnTypes option.
Here is the example from the documentation.
Specifying create table column data types on write
jdbcDF.write \
.option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)") \
.jdbc("jdbc:postgresql:dbserver", "schema.tablename",
properties={"user": "username", "password": "password"})

Spark Cassandra connector - Range query on partition key

I'm evaluating spark-cassandra-connector and i'm struggling trying to get a range query on partition key to work.
According to the connector's documentation it seems that's possible to make server-side filtering on partition key using equality or IN operator, but unfortunately, my partition key is a timestamp, so I can not use it.
So I tried using Spark SQL with the following query ('timestamp' is the partition key):
select * from datastore.data where timestamp >= '2013-01-01T00:00:00.000Z' and timestamp < '2013-12-31T00:00:00.000Z'
Although the job spawns 200 tasks, the query is not returning any data.
Also I can assure that there is data to be returned since running the query on cqlsh (doing the appropriate conversion using 'token' function) DOES return data.
I'm using spark 1.1.0 with standalone mode. Cassandra is 2.1.2 and connector version is 'b1.1' branch. Cassandra driver is DataStax 'master' branch.
Cassandra cluster is overlaid on spark cluster with 3 servers with replication factor of 1.
Here is the job's full log
Any clue anyone?
Update: When trying to do server-side filtering based on the partition key (using CassandraRDD.where method) I get the following exception:
Exception in thread "main" java.lang.UnsupportedOperationException: Range predicates on partition key columns (here: timestamp) are not supported in where. Use filter instead.
But unfortunately I don't know what "filter" is...
i think the CassandraRDD error is telling that the query that you are trying to do is not allowed in Cassandra and you have to load all the table in a CassandraRDD and then make a spark filter operation over this CassandraRDD.
So your code (in scala) should something like this:
val cassRDD= sc.cassandraTable("keyspace name", "table name").filter(row=> row.getDate("timestamp")>=DateFormat('2013-01-01T00:00:00.000Z')&&row.getDate("timestamp") < DateFormat('2013-12-31T00:00:00.000Z'))
If you are interested in making this type of queries you might have to take a look to others Cassandra connectors, like the one developed by Stratio
You have several options to get the solution you are looking for.
The most powerful one would be to use Lucene indexes integrated with Cassandra by Stratio, which allows you to search by any indexed field in the server side. Your writing time will be increased but, on the other hand, you will be able to query any time range. You can find further information about Lucene indexes in Cassandra here. This extended version of Cassandra is fully integrated into the deep-spark project so you can take all the advantages of the Lucene indexes in Cassandra through it. I would recommend you to use Lucene indexes when you are executing a restricted query that retrieves a small-medium result set, if you are going to retrieve a big piece of your data set, you should use the third option underneath.
Another approach, depending on how your application works, might be to truncate your timestamp field so you can look for it using an IN operator. The problem is, as far as I know, you can't use the spark-cassandra-connector for that, you should use the direct Cassandra driver which is not integrated with Spark, or you can have a look at the deep-spark project where a new feature allowing this is about to be released very soon. Your query would look something like this:
select * from datastore.data where timestamp IN ('2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', ... , '2013-12-31')
, but, as I said before, I don't know if it fits to your needs since you might not be able to truncate your data and group it by date/time.
The last option you have, but the less efficient, is to bring the full data set to your spark cluster and apply a filter on the RDD.
Disclaimer: I work for Stratio :-) Don't hesitate on contacting us if you need any help.
I hope it helps!

Resources