TimeDistributed Layers vs. ConvLSTM-2D - keras

Could anyone explains for me the differences between Time-Distributed Layers (from Keras Wrapper) and ConvLSTM-2D (Convolutional LSTM), for purposes, usage, etc.?

Both applies to a sequence of data.
Time Distributed is a very straightforward layer wrapper which only applies a layer (usually dense layer) on each time point. You need it when you need to change the shape of output tensor, especially the dimension of features, instead of sample size and time step.
ConvLSTM2D, is much more complex. You need to understand cnn and rnn layer first, where LSTM is one of most popular rnn. LSTM itself is applied on a sequence of of tensor, which is used for NLP, time series and for each time step the input is 1-dimension. cnn, the conv part, is usually used to learn from image, which is 2-dimension but don't have a sequence (time step). Combined together, convLSTM is used to learn image in a sequence, like video.

Related

Conv2D filters and CNN architecture

I am currently pursuing undergraduation, I am working on CNN model to recognize Telegu characters.
This Questions has two parts,
I have a (32,32,1) shape Telegu character images, I want to train my CNN model to recognize the character. So, what should be my model architecture and how to decide the architecture, no of parameters and hidden layers. I know that my case is exactly same as handwritten digit recognition, but I want to know how to decide those parameters. Is there any common practice in building such architecture.
Operation Conv2D (32, (5,5)) means 32 filters of size 5x5 are applied on to the input, my question is are these filters all same or different, if different what kind of filters are initialized and who decides them?
I tried to surf internet but everywhere I go, the answer I get is Conv2D operation applies filters on input and does the convolution operation.
To decide which model architecture would be best, you need to experiment. Thats the only way. As you want to classify, VGG architecture would be a good starting point I believe. You need to experiment with number of parameters as it depends on your problem. You can use Keras Tuner for it: https://keras.io/keras_tuner/
For kernel initialization, as far as I know convolutional layers in Keras uses Glorot Uniform Initialization but you can change that by using kernel_initializer parameter. Long story short, convolutional layers are initialized with a distribution function and as training goes filters change the values inside, which is learning process. https://keras.io/api/layers/initializers
Edit: I forgot to inform you that I suggest VGG architecture but in a way you downsize the models a lot. Your input shape is little so if your model is too much deep, you will overfit really quickly.

Using LSTM for large text

I have a dataset for detecting fake news that i got from kaggle( https://www.kaggle.com/c/fake-news/data ).
I want to use LSTM for the classification
The mean length of words in a single article is about 750 words. I have tried to remove punctuation, stop words, removed numbers. Preprocessing the text is also taking a very long time.
I'd like a method to feed large text into the LSTM using keras. What should i do to reduce computation time and not lose a lot of accuracy.
There are some things you could try to speed things up:
1. Use CUDNN version of LSTM
It is usually faster, check available layers here keras.layers.CuDNNLSTM is what you are after.
2. Use Conv1d to create features
You can use 1 dimensional convolution with kernel_size specifying how many words should be taken into account and stride specifying the jump of moving window. For kernel_size=3 and stride=3, padding="SAME" it would drop your dimensionality three times.
You may stack more convolutional layers.
On top of that you can still employ LSTM normally.
3. Drop LSTM altogether
You may go with 1d convolutions and pooling for classification, RNNs are not the only way.
On the upside: you will not encounter vanishing gradients (could be mitigated a little by Bidirectional LSTM as well).
On the downside: you will lose strict dependence between words, though it shouldn't be much of a problem for binary classification (I suppose it's your goal).

How to adopt multiple different loss functions in each steps of LSTM in Keras

I have a set of sentences and their scores, I would like to train a marking system that could predict the score for a given sentence, such one example is like this:
(X =Tomorrow is a good day, Y = 0.9)
I would like to use LSTM to build such a marking system, and also consider the sequential relationship between each word in the sentence, so the training example shown above is transformed as following:
(x1=Tomorrow, y1=is) (x2=is, y2=a) (x3=a, y3=good) (x4=day, y4=0.9)
When training this LSTM, I would like the first three time steps using a softmax classifier, and the final step using a MSE. It is obvious that the loss function used in this LSTM is composed of two different loss functions. In this case, it seems the Keras does not provide the way to address my problem directly. In addition, I am not sure whether my method to build the marking system is correct or not.
Keras support multiple loss functions as well:
model = Model(inputs=inputs,
outputs=[lang_model, sent_model])
model.compile(optimizer='sgd',
loss=['categorical_crossentropy', 'mse'],
metrics=['accuracy'], loss_weights=[1., 1.])
Based on your explanation, I think you need a model that first, predict a token based on previous tokens, in NLP domain it usually called Language model, and then compute a score which I assume it is a sentiment (it is applicable to other domain).
To do so, you can train your language model with LSTM and pick the last output of LSTM for your ranking task. To this end, you need to define two loss function: categorical_crossentropy for the language model and MSE for the ranking task.
This tutorial would be helpful: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/

Using Dropout with Keras and LSTM/GRU cell

In Keras you can specify a dropout layer like this:
model.add(Dropout(0.5))
But with a GRU cell you can specify the dropout as a parameter in the constructor:
model.add(GRU(units=512,
return_sequences=True,
dropout=0.5,
input_shape=(None, features_size,)))
What's the difference? Is one preferable to the other?
In Keras' documentation it adds it as a separate dropout layer (see "Sequence classification with LSTM")
The recurrent layers perform the same repeated operation over and over.
In each timestep, it takes two inputs:
Your inputs (a step of your sequence)
Internal inputs (can be states and the output of the previous step, for instance)
Note that the dimensions of the input and output may not match, which means that "your input" dimensions will not match "the recurrent input (previous step/states)" dimesions.
Then in every recurrent timestep there are two operations with two different kernels:
One kernel is applied to "your inputs" to process and transform it in a compatible dimension
Another (called recurrent kernel by keras) is applied to the inputs of the previous step.
Because of this, keras also uses two dropout operations in the recurrent layers. (Dropouts that will be applied to every step)
A dropout for the first conversion of your inputs
A dropout for the application of the recurrent kernel
So, in fact there are two dropout parameters in RNN layers:
dropout, applied to the first operation on the inputs
recurrent_dropout, applied to the other operation on the recurrent inputs (previous output and/or states)
You can see this description coded either in GRUCell and in LSTMCell for instance in the source code.
What is correct?
This is open to creativity.
You can use a Dropout(...) layer, it's not "wrong", but it will possibly drop "timesteps" too! (Unless you set noise_shape properly or use SpatialDropout1D, which is currently not documented yet)
Maybe you want it, maybe you dont. If you use the parameters in the recurrent layer, you will be applying dropouts only to the other dimensions, without dropping a single step. This seems healthy for recurrent layers, unless you want your network to learn how to deal with sequences containing gaps (this last sentence is a supposal).
Also, with the dropout parameters, you will be really dropping parts of the kernel as the operations are dropped "in every step", while using a separate layer will let your RNN perform non-dropped operations internally, since your dropout will affect only the final output.

keras RNN w/ local support and shared weights

I would like to understand how Keras sets up weights to be shared. Specifically, I would like to use a convolutional 1D layer for processing a time-frequency representation of an audio signal and feed it into an RNN (perhaps a GRU layer) that has:
local support (e.g. like the Conv1D layer with a specified kernel size). Things that are far away in frequency from an output are unlikely to affect the output.
Shared weights, that is I train only a single set of weights across all of the neurons in the RNN layer. Similar inferences should work at lower or higher frequencies.
Essentially, I'm looking for many of the properties that we find in the 2D RNN layers. I've been looking at some of the Keras source code for the convnets to try to understand how weight sharing is implemented, but when I see the weight allocation code in the layer build methods (e.g. in the _Conv class), it's not clear to me how the code is specifying that the weights for each filter are shared. Is this buried in the backend? I see that the backend call is to a specific 1D, 2D, or 3D convolution.
Any pointers in the right direction would be appreciated.
Thank you - Marie

Resources