Getting LockAcquisitionException while running multi Threaded DB operations - multithreading

I'm using Spring Boot 2.1.0 with Hibernate-core-5.3.7 and Oracle 12C. I have simple service, that performs Delete and Insert operations under same transaction. As long as I call the service in a single thread, service is working fine. But If I make concurrent calls for several Delete + Insert operations, some of the threads are failing with LockAcquisitionException.
My Service is designed as below
#Service
public class PersonServiceImpl implements PersonService{
#Autowired
private PersonRepository personRepository;
#Transactional
public void performOperation(List<Person> persons) {
//Delete all persons for say given person id
personRepository.deletePersons(persons.get(0));
personRepository.saveAll(persons);
personRepository.flush();
}
#Repository
public interface PersonRepository extends JpaRepository<Person,BigDecimal>, JpaSpecificationExecutor<Person>{
#Query("delete FROM Person p WHERE p.person_id = :personId")
#Modifying
public void deletePersons(#Param("person_id") final Long personId);
}
The intention of this operation is to delete all Persons for a given PersonId, and insert the Person records for the same personId.
When calling this service in multiple threads, I ensured that each thread will not override the other, as each thread will deal only with one particular PersonId and they are unique. So, the question of deadlock between the threads is ruled out.
When enabled the Trace, what I noticed is that for some of the concurrent threads, getting exception at the time flush. I also noticed that I see the exception often, if I'm dealing with huge volume of records per thread, than smaller set.
The exception I see is
2018-11-16 06:10:25,839 WARN
org.hibernate.engine.jdbc.spi.SqlExceptionHelper [http-nio-9090-exec-7] SQL
Error: 60, SQLState: 61000
2018-11-16 06:10:25,839 ERROR
org.hibernate.engine.jdbc.spi.SqlExceptionHelper [http-nio-9090-exec-7]
ORA-00060: deadlock detected while waiting for resource
2018-11-16 06:10:25,855 TRACE
org.hibernate.engine.jdbc.internal.JdbcCoordinatorImpl [http-nio-9090-exec-
7] Starting after statement execution processing [ON_CLOSE]
2018-11-16 06:10:25,857 TRACE
org.springframework.transaction.interceptor.TransactionAspectSupport [http-
nio-9090-exec-7] Completing transaction for
[org.springframework.data.jpa.repository.support.SimpleJpaRepository.flush]
after exception: javax.persistence.OptimisticLockException:
org.hibernate.exception.LockAcquisitionException: could not execute batch
I could not find exactly what is causing this deadlock within the same thread. Something might to do with Delete + Insert operation. But both are running in same transaction and in sequence. Does not the flush execute the SQL in the sequence they are submitted ?
I also noticed in logs, every time I call the service whether in a single thread or concurrently.
2018-11-16 06:10:03,403 TRACE
org.springframework.transaction.interceptor.TransactionAspectSupport [http-
nio-9090-exec-7] Don't need to create transaction for
[o.s.d.j.r.support.SimpleJpaRepository.deletePersons]: This method isn't
transactional.
What does this mean? Does it mean Delete is not transactional? Does not make sense though? as it is wrapped under #Transactional annotated at service method.
Any suggestions ?
I
Thanks

Related

Appropriate solution for long running computations in Azure App Service and .NET Core 3.1?

What is an appropriate solution for long running computations in Azure App Service and .NET Core 3.1 in an application that has no need for a database and no IO to anything outside of this application ? It is a computation task.
Specifically, the following is unreliable and needs a solution.
[Route("service")]
[HttpPost]
public Outbound Post(Inbound inbound)
{
Debug.Assert(inbound.Message.Equals("Hello server."));
Outbound outbound = new Outbound();
long Billion = 1000000000;
for (long i = 0; i < 33 * Billion; i++) // 230 seconds
;
outbound.Message = String.Format("The server processed inbound object.");
return outbound;
}
This sometimes returns a null object to the HttpClient (not shown). A smaller workload will always succeed. For example 3 billion iterations always succeeds. A bigger number would be nice specifically 240 billion is a requirement.
I think in the year 2020 a reasonable goal in Azure App Service with .NET Core might be to have a parent thread count to 240 billion with the help of 8 child threads so each child counts to 30 billion and the parent divides an 8 M byte inbound object into smaller objects inbound to each child. Each child receives a 1 M byte inbound and returns to the parent a 1 M byte outbound. The parent re-assembles the result into a 8 M byte outbound.
Obviously the elapsed time will be 12.5%, or 1/8, or one-eighth, of the time a single thread implementation would need. The time to cut-up and re-assemble objects is small compared to the computation time. I am assuming the time to transmit the objects is very small compared to the computation time so the 12.5% expectation is roughly accurate.
If I can get 4 or 8 cores that would be good. If I can get threads that give me say 50% of the cycles of a core, then I would need may be 8 or 16 threads. If each thread gives me 33% of the cycles of a core then I would need 12 or 24 threads.
I am considering the BackgroundService class but I am looking for confirmation that this is the correct approach. Microsoft says...
BackgroundService is a base class for implementing a long running IHostedService.
Obviously if something is long running it would be better to make it finish sooner by using multiple cores via System.Threading but this documentation seems to mention System.Threading only in the context of starting tasks via System.Threading.Timer. My example code shows there is no timer needed in my application. An HTTP POST will serve as the occasion to do work. Typically I would use System.Threading.Thread to instantiate multiple objects to use multiple cores. I find the absence of any mention of multiple cores to be a glaring omission in the context of a solution for work that takes a long time but may be there is some reason Azure App Service doesn't deal with this matter. Perhaps I am just not able to find it in tutorials and documentation.
The initiation of the task is the illustrated HTTP POST controller. Suppose the longest job takes 10 minutes. The HTTP client (not shown) sets the timeout limit to 1000 seconds which is much more than 10 minutes (600 seconds) in order for there to be a margin of safety. HttpClient.Timeout is the relevant property. For the moment I am presuming the HTTP timeout is a real limit; rather than some sort of non-binding (fake limit) such that some other constraint results in the user waiting 9 minutes and receiving an error message. A real binding limit is a limit for which I can say "but for this timeout it would have succeeded". If the HTTP timeout is not the real binding limit and there is something else constraining the system, I can adjust my HTTP controller to instead have three (3) POST methods. Thus POST1 would mean start a task with the inbound object. POST2 means tell me if it is finished. POST3 means give me the outbound object.
What is an appropriate solution for long running computations in Azure App Service and .NET Core 3.1 in an application that has no need for a database and no IO to anything outside of this application ? It is a computation task.
Prologue
A few years ago a ran in to a pretty similar problem. We needed a service that could process large amounts of data. Sometimes the processing would take 10 seconds, other times it could take an hour.
At first we did it how your question illustrates: Send a request to the service, the service processes the data from the request and returns the response when finished.
Issues At Hand
This was fine when the job only took around a minute or less, but anything above this, the server would shut down the session and the caller would report an error.
Servers have a default of around 2 minutes to produce a response before it gives up on the request. It doesn't quit the processing of the request... but it does quit the HTTP session. It doesn't matter what parameters you set on your HttpClient, the server is the one that delegates how long is too long.
Reasons For Issues
All this is for good reasons. Server sockets are extremely expensive. You have a finite amount to go around. The server is trying to protect your service by severing requests that are taking longer than a specified time in order to avoid socket starvation issues.
Typically you want your HTTP requests to take only a few milliseconds. If they are taking longer than this, you will eventually run in to socket issues if your service has to fulfil other requests at a high rate.
Solution
We decided to go the route of IHostedService, specifically the BackgroundService. We use this service in conjunction with a Queue. This way you can set up a queue of jobs and the BackgroundService will process them one at a time (in some instances we have service processing multiple queue items at once, in others we scaled horizontally producing two or more queues).
Why an ASP.NET Core service running a BackgroundService? I wanted to handle this without tightly-coupling to any Azure-specific constructs in case we needed to move out of Azure to some other cloud service (back in the day we were contemplating this for other reasons we had at the time.)
This has worked out quite well for us and we haven't seen any issues since.
The work flow goes like this:
Caller sends a request to the service with some parameters
Service generates a "job" object and returns an ID immediately via 202 (accepted) response
Service places this job in to a queue that is being maintained by a BackgroundService
Caller can query the job status and get information about how much has been done and how much is left to go using this job ID
Service finishes the job, puts the job in to a "completed" state and goes back to waiting on the queue to produce more jobs
Keep in mind your service has the capability to scale horizontally where there would be more than one instance running. In this case I am using Redis Cache to store the state of the jobs so that all instances share the same state.
I also added in a "Memory Cache" option to test things locally if you don't have a Redis Cache available. You could run the "Memory Cache" service on a server, just know that if it scales then your data will be inconsistent.
Example
Since I'm married with kids, I really don't do much on Friday nights after everyone goes to bed, so I spent some time putting together an example that you can try out. The full solution is also available for you to try out.
QueuedBackgroundService.cs
This class implementation serves two specific purposes: One is to read from the queue (the BackgroundService implementation), the other is to write to the queue (the IQueuedBackgroundService implementation).
public interface IQueuedBackgroundService
{
Task<JobCreatedModel> PostWorkItemAsync(JobParametersModel jobParameters);
}
public sealed class QueuedBackgroundService : BackgroundService, IQueuedBackgroundService
{
private sealed class JobQueueItem
{
public string JobId { get; set; }
public JobParametersModel JobParameters { get; set; }
}
private readonly IComputationWorkService _workService;
private readonly IComputationJobStatusService _jobStatusService;
// Shared between BackgroundService and IQueuedBackgroundService.
// The queueing mechanism could be moved out to a singleton service. I am doing
// it this way for simplicity's sake.
private static readonly ConcurrentQueue<JobQueueItem> _queue =
new ConcurrentQueue<JobQueueItem>();
private static readonly SemaphoreSlim _signal = new SemaphoreSlim(0);
public QueuedBackgroundService(IComputationWorkService workService,
IComputationJobStatusService jobStatusService)
{
_workService = workService;
_jobStatusService = jobStatusService;
}
/// <summary>
/// Transient method via IQueuedBackgroundService
/// </summary>
public async Task<JobCreatedModel> PostWorkItemAsync(JobParametersModel jobParameters)
{
var jobId = await _jobStatusService.CreateJobAsync(jobParameters).ConfigureAwait(false);
_queue.Enqueue(new JobQueueItem { JobId = jobId, JobParameters = jobParameters });
_signal.Release(); // signal for background service to start working on the job
return new JobCreatedModel { JobId = jobId, QueuePosition = _queue.Count };
}
/// <summary>
/// Long running task via BackgroundService
/// </summary>
protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
while(!stoppingToken.IsCancellationRequested)
{
JobQueueItem jobQueueItem = null;
try
{
// wait for the queue to signal there is something that needs to be done
await _signal.WaitAsync(stoppingToken).ConfigureAwait(false);
// dequeue the item
jobQueueItem = _queue.TryDequeue(out var workItem) ? workItem : null;
if(jobQueueItem != null)
{
// put the job in to a "processing" state
await _jobStatusService.UpdateJobStatusAsync(
jobQueueItem.JobId, JobStatus.Processing).ConfigureAwait(false);
// the heavy lifting is done here...
var result = await _workService.DoWorkAsync(
jobQueueItem.JobId, jobQueueItem.JobParameters,
stoppingToken).ConfigureAwait(false);
// store the result of the work and set the status to "finished"
await _jobStatusService.StoreJobResultAsync(
jobQueueItem.JobId, result, JobStatus.Success).ConfigureAwait(false);
}
}
catch(TaskCanceledException)
{
break;
}
catch(Exception ex)
{
try
{
// something went wrong. Put the job in to an errored state and continue on
await _jobStatusService.StoreJobResultAsync(jobQueueItem.JobId, new JobResultModel
{
Exception = new JobExceptionModel(ex)
}, JobStatus.Errored).ConfigureAwait(false);
}
catch(Exception)
{
// TODO: log this
}
}
}
}
}
It is injected as so:
services.AddHostedService<QueuedBackgroundService>();
services.AddTransient<IQueuedBackgroundService, QueuedBackgroundService>();
ComputationController.cs
The controller used to read/write jobs looks like this:
[ApiController, Route("api/[controller]")]
public class ComputationController : ControllerBase
{
private readonly IQueuedBackgroundService _queuedBackgroundService;
private readonly IComputationJobStatusService _computationJobStatusService;
public ComputationController(
IQueuedBackgroundService queuedBackgroundService,
IComputationJobStatusService computationJobStatusService)
{
_queuedBackgroundService = queuedBackgroundService;
_computationJobStatusService = computationJobStatusService;
}
[HttpPost, Route("beginComputation")]
[ProducesResponseType(StatusCodes.Status202Accepted, Type = typeof(JobCreatedModel))]
public async Task<IActionResult> BeginComputation([FromBody] JobParametersModel obj)
{
return Accepted(
await _queuedBackgroundService.PostWorkItemAsync(obj).ConfigureAwait(false));
}
[HttpGet, Route("computationStatus/{jobId}")]
[ProducesResponseType(StatusCodes.Status200OK, Type = typeof(JobModel))]
[ProducesResponseType(StatusCodes.Status404NotFound, Type = typeof(string))]
public async Task<IActionResult> GetComputationResultAsync(string jobId)
{
var job = await _computationJobStatusService.GetJobAsync(jobId).ConfigureAwait(false);
if(job != null)
{
return Ok(job);
}
return NotFound($"Job with ID `{jobId}` not found");
}
[HttpGet, Route("getAllJobs")]
[ProducesResponseType(StatusCodes.Status200OK,
Type = typeof(IReadOnlyDictionary<string, JobModel>))]
public async Task<IActionResult> GetAllJobsAsync()
{
return Ok(await _computationJobStatusService.GetAllJobsAsync().ConfigureAwait(false));
}
[HttpDelete, Route("clearAllJobs")]
[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status401Unauthorized)]
public async Task<IActionResult> ClearAllJobsAsync([FromQuery] string permission)
{
if(permission == "this is flakey security so this can be run as a public demo")
{
await _computationJobStatusService.ClearAllJobsAsync().ConfigureAwait(false);
return Ok();
}
return Unauthorized();
}
}
Working Example
For as long as this question is active, I will maintain a working example you can try out. For this specific example, you can specify how many iterations you would like to run. To simulate long-running work, each iteration is 1 second. So, if you set the iteration value to 60, it will run that job for 60 seconds.
While it's running, run the computationStatus/{jobId} or getAllJobs endpoint. You can watch all the jobs update in real time.
This example is far from a fully-functioning-covering-all-edge-cases-full-blown-ready-for-production example, but it's a good start.
Conclusion
After a few years of working in the back-end, I have seen a lot of issues arise by not knowing all the "rules" of the back-end. Hopefully this answer will shed some light on issues I had in the past and hopefully this saves you from having to deal with said problems.
One option could be to try out Azure Durable Functions, which are more oriented to long-running jobs that warrant checkpoints and state as against attempting to finish within the context of the triggering request. It also has the concept of fan-out/fan-in, in case what you're describing could be divided into smaller jobs with an aggregated result.
If just raw compute is the goal, Azure Batch might be a better option since it facilitates that scaling.
I assume the actual work that needs be done is something other than iterating over a loop doing nothing, so in terms of possible parallelization I can't offer much help right now. Is the work CPU intensive or IO related?
When it comes to long running work in an Azure App Service, one of the option is to use a Web Job. A possible solution would be to post the request for computation to a queue (Storage Queue or Azure Message Bus Queues). The webjob then processes those messages and possibly puts a new message on another queue that the requester can use to handle the results.
If the time needed for processing is guaranteed to be less than 10 minutes you could replace the Web Job with an Queue Triggered Azure Function. It is a serverless offering on Azure with great scaling possibilities.
Another option is indeed using a Service Worker or an instance of an IHostingService and do some queue processing there.
Since you're saying that your computation succeeds at fewer iterations, a simple solution is to simply save your results periodically and resume the computation.
For example, say you need to perform 240 Billion iterations, and you know that the highest number of iterations to perform reliably is 3 Billion iterations, I would set up the following:
A slave, that actually performs the task (240Billion iterations)
A master that periodically received input from the slave about progress.
The slave can periodically send a message to the master (say once every 2billion iterations ?). This message could contain whatever is relevant to resume the computation should the computation be interrupted.
The master should keep track of the slave. If the master determines that the slave has died / crashed / whatever, the master should simply create a new slave which should resume computation from the last reported position.
How exactly you implement the master and slave is a matter of your personal preference.
Rather than have a single loop perform 240 billion iterations, if you can split your computation across nodes, I would try to simultaneously compute the solution in parallel across as many nodes as possible.
I personally use node.js for multicore projects. Although you are using asp.net, I include this example of node.js to illustrate the architecture that works for me.
Node.js on multi-core machines
https://dzone.com/articles/multicore-programming-in-nodejs
As Noah Stahl has mentioned in his answer, Azure Durable Functions and Azure Batch seem like options to help you achieve your goal on your platform. Please see his answer for more details.
The standard answer is to use asynchronous messaging. I have a blog series on the topic. This is particularly the case since you're already in Azure.
You already have an Azure web app service, but now you want to run code outside of a request - "request-extrinsic code". The proper way to run that code is in a separate process - Azure Functions or Azure WebJobs are a good match for Azure webapps.
First, you want a durable queue. Azure Storage Queues are a good fit since you're in Azure anyway. Then your webapi can just write a message into the queue and return. The important part here is that this is a durable queue, not an in-memory queue.
Meanwhile, the Azure Function / WebJob is processing that queue. It will pick up the work from the queue and execute it.
The final piece of the puzzle is the completion notification. This is a pretty common approach:
I can adjust my HTTP controller to instead have three (3) POST methods. Thus POST1 would mean start a task with the inbound object. POST2 means tell me if it is finished. POST3 means give me the outbound object.
To do this, your background processor should save the "in-progress" / "complete/result" state somewhere where the webapi process can access it. If you already have a shared database (and it makes sense to keep results), then this may be the easiest choice. I would also consider using Azure Cosmos DB, which has a nice time-to-live setting so the background service can inject the results that are "good for 24 hours" or whatever, after which they're automatically cleaned up.

Using Hibernate, Spring Data JPA in multithreading [duplicate]

I am using Spring Batch and Partition to do parallel processing. Hibernate and Spring Data Jpa for db. For the partition step, the reader, processor and writer have stepscope and so I can inject partition key and range(from-to) to them. Now in processor, I have one synchronized method and expected this method to be ran once at time, but it is not the case.
I set it to have 10 partitions , all 10 Item reader read the right partitioned range. The problem comes with item processor. Blow code has the same logic I use.
public class accountProcessor implementes ItemProcessor{
#override
public Custom process(item) {
createAccount(item);
return item;
}
//account has unique constraints username, gender, and email
/*
When 1 thread execute that method, it will create 1 account
and save it. If next thread comes in and try to save the same account,
it should find the account created by first thread and do one update.
But now it doesn't happen, instead findIfExist return null
and it try to do another insert of duplicate data
*/
private synchronized void createAccount(item) {
Account account = accountRepo.findIfExist(item.getUsername(), item.getGender(), item.getEmail());
if(account == null) {
//account doesn't exist
account = new Account();
account.setUsername(item.getUsername());
account.setGender(item.getGender());
account.setEmail(item.getEmail());
account.setMoney(10000);
} else {
account.setMoney(account.getMoney()-10);
}
accountRepo.save(account);
}
}
The expected output is that only 1 thread will run this method at any given time and so that there will be no duplicate inserttion in db as well as avoid DataintegrityViolationexception.
Actually result is that second thread can't find the first account and try to create a duplicate account and save to db, which will cause DataintegrityViolationexception, unique constraints error.
Since I synchronized the method, thread should execute it in order, second thread should wait for first thread to finish and then run, which mean it should be able to find the first account.
I tried with many approaches, like a volatile set to contains all unique accounts, do saveAndFlush to make commits asap, using threadlocal whatsoever, no of these works.
Need some help.
Since you made the item processor step-scoped, you don't really need synchronization as each step will have its own instance of the processor.
But it looks like you have a design problem rather than an implementation issue. You are trying to sychronize threads to act in a certain order in a parallel setup. When you decide to go parallel and divide the data into partitions and give each worker (either local or remote) a partition to work on, you must admit that these partitions will be processed in an undefined order and that there should be no relation between records of each partition or between the work done by each worker.
When 1 thread execute that method, it will create 1 account
and save it. If next thread comes in and try to save the same account,
it should find the account created by first thread and do one update. But now it doesn't happen, instead findIfExist return null and it try to do another insert of duplicate data
That's because the transaction of thread1 may not be committed yet, hence thread2 won't find the record you think have been inserted by thread1.
It looks like you are trying to create or update some accounts with a partitioned setup. I'm not sure if this setup is suitable for the problem at hand.
As a side note, I would not call accountRepo.save(account); in an item processor but rather do that in an item writer.
Hope this helps.

Concurrency in Message Driven Bean - Thread safe Java EE5 vs. EE6

I have a situation where I need a set of operations be enclosed into a single transaction and be thread safe from a MDB.
If thread A executes the instruction 1, do not want other threads can read, at least not the same, data that thread A is processing.
In the code below since IMAGE table contains duplicated data, coming from different sources, this will lead in a duplicated INFRANCTION. Situation that needs to be avoided.
The actual solution that I found is declaring a new transaction for each new message and synchronize the entire transaction.
Simplifying the code:
#Stateless
InfranctionBean{
#TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
checkInfranction(String plate){
1. imageBean.getImage(plate); // read from table IMAGE
2. infranctionBean.insertInfranction(String plate); // insert into table INFRANCTION
3. imageBean.deleteImage(String plate); //delete from table IMAGE
}
}
#MessageDriven
public class ImageReceiver {
private static Object lock = new Object();
public void onMessage(Message msg){
String plate = msg.plate;
synchronized (lock) {
infanctionBean.checkInfranction(plate);
}
}
}
I am aware that using synchronized blocks inside the EJB is not recommanded by EJB specification. This can lead even in problems if the applicaton server runs in two node cluster.
Seems like EE6 has introduced a solution for this scenario, which is the EJB Singleton.
In this case, my solution would be something like this:
#ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
#Singleton
InfranctionBean{
#Lock(LockType.WRITE)
checkInfranction(String plate){
1...
2...
3...
}
}
And from MDB would not be neccessary the usage of synchronized block since the container will handle the concurrency.
With #Lock(WRITE) the container guarantees the access of single thread inside checkInfranction().
My queston is: How can I handle this situation in EE5? There is a cleaner solution without using synchronized block?
Environment: Java5,jboss-4.2.3.GA,Oracle10.
ACTUAL SOLUTION
#Stateless
InfranctionBean{
#TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
checkInfranction(String plate){
1. imageBean.lockImageTable(); // lock table IMAGE in exclusive mode
2. imageBean.getImage(plate); // read from table IMAGE
3. infranctionBean.insertInfranction(String plate); // insert into table INFRANCTION
4. imageBean.deleteImage(String plate); //delete from table IMAGE
}
}
#MessageDriven
public class ImageReceiver {
public void onMessage(Message msg){
infanctionBean.checkInfranction(msg.plate);
}
}
On 20.000 incoming messages (half of them simultaneously) seems the application works ok.
#Lock(WRITE) is only a lock within a single application/JVM, so unless you can guarantee that only one application/JVM is accessing the data, you're not getting much protection anyway. If you're only looking for single application/JVM protection, the best solution in EE 5 would be a ReadWriteLock or perhaps a synchronized block. (The EJB specification has language to dissuade applications from doing this to avoid compromising the thread management of the server, so take care that you don't block indefinitely, that you don't ignore interrupts, etc.)
If you're looking for a more robust cross-application/JVM solution, I would use database locks or isolation levels rather than trying to rely on JVM synchronized primitives. That is probably the best solution regardless of the EJB version being used.

Spring Batch thread-safe ItemReader (process indicator pattern)

I'm already implemented Remote Chunking using AMQP (RabbitMQ). Now I need to run parallel jobs from within a web container.
My simple controller (testJob use remote chunking):
#Controller
public class JobController {
#Autowired
private JobLauncher jobLauncher;
#Autowired
private Job testJob;
#RequestMapping("/job/test")
public void test() {
JobParametersBuilder jobParametersBuilder = new JobParametersBuilder();
jobParametersBuilder.addDate("date",new Date());
try {
jobLauncher.run(personJob,jobParametersBuilder.toJobParameters());
} catch (JobExecutionAlreadyRunningException | JobRestartException | JobParametersInvalidException | JobInstanceAlreadyCompleteException e) {
e.printStackTrace();
}
}
}
testJob reads data from filesystem (master chunk) and send it to remote chunk (slave chunk). The problem is that ItemReader is not thread safe.
There are some practical limitations of using multi-threaded Steps for some common Batch use cases. Many participants in a Step (e.g. readers and writers) are stateful, and if the state is not segregated by thread, then those components are not usable in a multi-threaded Step. In particular most of the off-the-shelf readers and writers from Spring Batch are not designed for multi-threaded use. It is, however, possible to work with stateless or thread safe readers and writers, and there is a sample (parallelJob) in the Spring Batch Samples that show the use of a process indicator (see Section 6.12, “Preventing State Persistence”) to keep track of items that have been processed in a database input table.
I'm considered on parallelJob sample on spring batch github repository
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-samples/src/main/java/org/springframework/batch/sample/common/StagingItemReader.java
I'm a bit confused about Process indicator pattern. Where I can find more detailed information about this pattern?
If all you're concerned with is that the ItemReader instance would be shared across job invocations, you can declare the ItemReader as a step scope and you'll get a new instance per invocation which would remove the threading concerns.
But to answer your direct question about the process indicator pattern I'm not sure where good documentation on it by itself is. There is a sample of it's implementation in the Spring Batch Samples (the parallel job uses it).
The idea behind it is that you provide a status to the records you are going to process. At the beginning of the job/step you mark those records as in process. As the records are committed, you mark them as processed. This removes the need to track the state in the reader since your state is actually in the db (your query only looks for records marked as in process).

Distributed\Parallel computing using app-engine (java api)

I want to use the master-slave (worker) paradigm, to solve a problem. I have read that opening new threads manually (for example using thread pool) is not available and I need to use queue, attached code example:
class MyDeferred implements DeferredTask {
#Override
public void run() {
// Do something interesting
}
};
MyDeferred task = new MyDeferred();
// Set instance variables etc as you wish
Queue queue = QueueFactory.getDefaultQueue();
queue.add(withPayload(task));
How can I get the result of the workers (which were added to the queue)?
I need this info, in-order to solve the bigger problem.
Actually you can use threads on GAE, but there are limitations. If you need long-running threads you can use background threads, but this requires you to use backend instances.
If you opt to use task queue, then keep in mind that tasks do not "return" to caller. To aggregate results you'll need to use datastore.
You will have to write the results into the datastore.
Just as a starting point to think about it, you might pass a JobId as a parameter to the tasks, have each task write an entity with the result and the JobId, and then later query the datstore for the given JobId to get all the results.

Resources