Spring Batch thread-safe ItemReader (process indicator pattern) - multithreading

I'm already implemented Remote Chunking using AMQP (RabbitMQ). Now I need to run parallel jobs from within a web container.
My simple controller (testJob use remote chunking):
#Controller
public class JobController {
#Autowired
private JobLauncher jobLauncher;
#Autowired
private Job testJob;
#RequestMapping("/job/test")
public void test() {
JobParametersBuilder jobParametersBuilder = new JobParametersBuilder();
jobParametersBuilder.addDate("date",new Date());
try {
jobLauncher.run(personJob,jobParametersBuilder.toJobParameters());
} catch (JobExecutionAlreadyRunningException | JobRestartException | JobParametersInvalidException | JobInstanceAlreadyCompleteException e) {
e.printStackTrace();
}
}
}
testJob reads data from filesystem (master chunk) and send it to remote chunk (slave chunk). The problem is that ItemReader is not thread safe.
There are some practical limitations of using multi-threaded Steps for some common Batch use cases. Many participants in a Step (e.g. readers and writers) are stateful, and if the state is not segregated by thread, then those components are not usable in a multi-threaded Step. In particular most of the off-the-shelf readers and writers from Spring Batch are not designed for multi-threaded use. It is, however, possible to work with stateless or thread safe readers and writers, and there is a sample (parallelJob) in the Spring Batch Samples that show the use of a process indicator (see Section 6.12, “Preventing State Persistence”) to keep track of items that have been processed in a database input table.
I'm considered on parallelJob sample on spring batch github repository
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-samples/src/main/java/org/springframework/batch/sample/common/StagingItemReader.java
I'm a bit confused about Process indicator pattern. Where I can find more detailed information about this pattern?

If all you're concerned with is that the ItemReader instance would be shared across job invocations, you can declare the ItemReader as a step scope and you'll get a new instance per invocation which would remove the threading concerns.
But to answer your direct question about the process indicator pattern I'm not sure where good documentation on it by itself is. There is a sample of it's implementation in the Spring Batch Samples (the parallel job uses it).
The idea behind it is that you provide a status to the records you are going to process. At the beginning of the job/step you mark those records as in process. As the records are committed, you mark them as processed. This removes the need to track the state in the reader since your state is actually in the db (your query only looks for records marked as in process).

Related

Multithreading solution for problem - RxJava vs ExecutorService

I am trying to build an application that requires some concurrency since throughput is important.
The steps can be summarized as follows:
I have multiple AccountCollector classes. Each one retrieves UserAccounts from two different REST endpoints and combines the responses into a list.
So
AccountCollector1 -> (AccountRestService1, AccountRestService2) -> return List
AccountCollector2 -> (AccountRestService3, AccountRestService4) -> return List
Ideally, the calls within AccountCollector should be concurrent. It should send off the requests and wait until both return, then do some processing on the results and notify someone waiting of the result
Also ideally, the AccountCollectors should also be running in parallel, they don't depend on each other.
So there are two levels of concurrency, the AccountCollectors running in parallel, and the AccountRestServices running in parallel within each AccountCollector.
I am exploring the best implementation for this.
I started with using Spring Webflux so that the AccountRestService returns a Mono.
I thought RxJava would be ideal for this but I failed to find a way to merge the results in a way where
the merger waits until all REST clients have returned the Mono or at least timedout/failed
So I went ahead and implemented the parallelism using the ExecutorService (pseudocode below).
I also use ExecutorService to achieve parallelism among the AccountCollectors
My questions are as follows:
To me the fact that I'm mixing ExecutorService and reactive programming suggests something is wrong. Would that be right?
Given that in the future the number of AccountCollectors could grow to hundreds - is the ExecutorService a better solution anyway than RxJava?
If not, what would be the best way to merge the calls to the REST clients using RxJava? Any suggestions?
Sorry for the verbose question, I am happy to provide more details. The main thing bothering me is that I started with WebFlux and now I feel I am losing any advantages this gives me.
Thanks!
public interface AccountRestService {
Mono<UserAccount> fetchUserAccount();
}
public class AccountCollector {
public List<UserAccount> collect() {
ExecutorService executor = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors());
CompletionService<List<UserAccount> pool = new ExecutorCompletionService<>(executor);
///submit to pool two rest clients
// get from pool, collect
}
}

Appropriate solution for long running computations in Azure App Service and .NET Core 3.1?

What is an appropriate solution for long running computations in Azure App Service and .NET Core 3.1 in an application that has no need for a database and no IO to anything outside of this application ? It is a computation task.
Specifically, the following is unreliable and needs a solution.
[Route("service")]
[HttpPost]
public Outbound Post(Inbound inbound)
{
Debug.Assert(inbound.Message.Equals("Hello server."));
Outbound outbound = new Outbound();
long Billion = 1000000000;
for (long i = 0; i < 33 * Billion; i++) // 230 seconds
;
outbound.Message = String.Format("The server processed inbound object.");
return outbound;
}
This sometimes returns a null object to the HttpClient (not shown). A smaller workload will always succeed. For example 3 billion iterations always succeeds. A bigger number would be nice specifically 240 billion is a requirement.
I think in the year 2020 a reasonable goal in Azure App Service with .NET Core might be to have a parent thread count to 240 billion with the help of 8 child threads so each child counts to 30 billion and the parent divides an 8 M byte inbound object into smaller objects inbound to each child. Each child receives a 1 M byte inbound and returns to the parent a 1 M byte outbound. The parent re-assembles the result into a 8 M byte outbound.
Obviously the elapsed time will be 12.5%, or 1/8, or one-eighth, of the time a single thread implementation would need. The time to cut-up and re-assemble objects is small compared to the computation time. I am assuming the time to transmit the objects is very small compared to the computation time so the 12.5% expectation is roughly accurate.
If I can get 4 or 8 cores that would be good. If I can get threads that give me say 50% of the cycles of a core, then I would need may be 8 or 16 threads. If each thread gives me 33% of the cycles of a core then I would need 12 or 24 threads.
I am considering the BackgroundService class but I am looking for confirmation that this is the correct approach. Microsoft says...
BackgroundService is a base class for implementing a long running IHostedService.
Obviously if something is long running it would be better to make it finish sooner by using multiple cores via System.Threading but this documentation seems to mention System.Threading only in the context of starting tasks via System.Threading.Timer. My example code shows there is no timer needed in my application. An HTTP POST will serve as the occasion to do work. Typically I would use System.Threading.Thread to instantiate multiple objects to use multiple cores. I find the absence of any mention of multiple cores to be a glaring omission in the context of a solution for work that takes a long time but may be there is some reason Azure App Service doesn't deal with this matter. Perhaps I am just not able to find it in tutorials and documentation.
The initiation of the task is the illustrated HTTP POST controller. Suppose the longest job takes 10 minutes. The HTTP client (not shown) sets the timeout limit to 1000 seconds which is much more than 10 minutes (600 seconds) in order for there to be a margin of safety. HttpClient.Timeout is the relevant property. For the moment I am presuming the HTTP timeout is a real limit; rather than some sort of non-binding (fake limit) such that some other constraint results in the user waiting 9 minutes and receiving an error message. A real binding limit is a limit for which I can say "but for this timeout it would have succeeded". If the HTTP timeout is not the real binding limit and there is something else constraining the system, I can adjust my HTTP controller to instead have three (3) POST methods. Thus POST1 would mean start a task with the inbound object. POST2 means tell me if it is finished. POST3 means give me the outbound object.
What is an appropriate solution for long running computations in Azure App Service and .NET Core 3.1 in an application that has no need for a database and no IO to anything outside of this application ? It is a computation task.
Prologue
A few years ago a ran in to a pretty similar problem. We needed a service that could process large amounts of data. Sometimes the processing would take 10 seconds, other times it could take an hour.
At first we did it how your question illustrates: Send a request to the service, the service processes the data from the request and returns the response when finished.
Issues At Hand
This was fine when the job only took around a minute or less, but anything above this, the server would shut down the session and the caller would report an error.
Servers have a default of around 2 minutes to produce a response before it gives up on the request. It doesn't quit the processing of the request... but it does quit the HTTP session. It doesn't matter what parameters you set on your HttpClient, the server is the one that delegates how long is too long.
Reasons For Issues
All this is for good reasons. Server sockets are extremely expensive. You have a finite amount to go around. The server is trying to protect your service by severing requests that are taking longer than a specified time in order to avoid socket starvation issues.
Typically you want your HTTP requests to take only a few milliseconds. If they are taking longer than this, you will eventually run in to socket issues if your service has to fulfil other requests at a high rate.
Solution
We decided to go the route of IHostedService, specifically the BackgroundService. We use this service in conjunction with a Queue. This way you can set up a queue of jobs and the BackgroundService will process them one at a time (in some instances we have service processing multiple queue items at once, in others we scaled horizontally producing two or more queues).
Why an ASP.NET Core service running a BackgroundService? I wanted to handle this without tightly-coupling to any Azure-specific constructs in case we needed to move out of Azure to some other cloud service (back in the day we were contemplating this for other reasons we had at the time.)
This has worked out quite well for us and we haven't seen any issues since.
The work flow goes like this:
Caller sends a request to the service with some parameters
Service generates a "job" object and returns an ID immediately via 202 (accepted) response
Service places this job in to a queue that is being maintained by a BackgroundService
Caller can query the job status and get information about how much has been done and how much is left to go using this job ID
Service finishes the job, puts the job in to a "completed" state and goes back to waiting on the queue to produce more jobs
Keep in mind your service has the capability to scale horizontally where there would be more than one instance running. In this case I am using Redis Cache to store the state of the jobs so that all instances share the same state.
I also added in a "Memory Cache" option to test things locally if you don't have a Redis Cache available. You could run the "Memory Cache" service on a server, just know that if it scales then your data will be inconsistent.
Example
Since I'm married with kids, I really don't do much on Friday nights after everyone goes to bed, so I spent some time putting together an example that you can try out. The full solution is also available for you to try out.
QueuedBackgroundService.cs
This class implementation serves two specific purposes: One is to read from the queue (the BackgroundService implementation), the other is to write to the queue (the IQueuedBackgroundService implementation).
public interface IQueuedBackgroundService
{
Task<JobCreatedModel> PostWorkItemAsync(JobParametersModel jobParameters);
}
public sealed class QueuedBackgroundService : BackgroundService, IQueuedBackgroundService
{
private sealed class JobQueueItem
{
public string JobId { get; set; }
public JobParametersModel JobParameters { get; set; }
}
private readonly IComputationWorkService _workService;
private readonly IComputationJobStatusService _jobStatusService;
// Shared between BackgroundService and IQueuedBackgroundService.
// The queueing mechanism could be moved out to a singleton service. I am doing
// it this way for simplicity's sake.
private static readonly ConcurrentQueue<JobQueueItem> _queue =
new ConcurrentQueue<JobQueueItem>();
private static readonly SemaphoreSlim _signal = new SemaphoreSlim(0);
public QueuedBackgroundService(IComputationWorkService workService,
IComputationJobStatusService jobStatusService)
{
_workService = workService;
_jobStatusService = jobStatusService;
}
/// <summary>
/// Transient method via IQueuedBackgroundService
/// </summary>
public async Task<JobCreatedModel> PostWorkItemAsync(JobParametersModel jobParameters)
{
var jobId = await _jobStatusService.CreateJobAsync(jobParameters).ConfigureAwait(false);
_queue.Enqueue(new JobQueueItem { JobId = jobId, JobParameters = jobParameters });
_signal.Release(); // signal for background service to start working on the job
return new JobCreatedModel { JobId = jobId, QueuePosition = _queue.Count };
}
/// <summary>
/// Long running task via BackgroundService
/// </summary>
protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
while(!stoppingToken.IsCancellationRequested)
{
JobQueueItem jobQueueItem = null;
try
{
// wait for the queue to signal there is something that needs to be done
await _signal.WaitAsync(stoppingToken).ConfigureAwait(false);
// dequeue the item
jobQueueItem = _queue.TryDequeue(out var workItem) ? workItem : null;
if(jobQueueItem != null)
{
// put the job in to a "processing" state
await _jobStatusService.UpdateJobStatusAsync(
jobQueueItem.JobId, JobStatus.Processing).ConfigureAwait(false);
// the heavy lifting is done here...
var result = await _workService.DoWorkAsync(
jobQueueItem.JobId, jobQueueItem.JobParameters,
stoppingToken).ConfigureAwait(false);
// store the result of the work and set the status to "finished"
await _jobStatusService.StoreJobResultAsync(
jobQueueItem.JobId, result, JobStatus.Success).ConfigureAwait(false);
}
}
catch(TaskCanceledException)
{
break;
}
catch(Exception ex)
{
try
{
// something went wrong. Put the job in to an errored state and continue on
await _jobStatusService.StoreJobResultAsync(jobQueueItem.JobId, new JobResultModel
{
Exception = new JobExceptionModel(ex)
}, JobStatus.Errored).ConfigureAwait(false);
}
catch(Exception)
{
// TODO: log this
}
}
}
}
}
It is injected as so:
services.AddHostedService<QueuedBackgroundService>();
services.AddTransient<IQueuedBackgroundService, QueuedBackgroundService>();
ComputationController.cs
The controller used to read/write jobs looks like this:
[ApiController, Route("api/[controller]")]
public class ComputationController : ControllerBase
{
private readonly IQueuedBackgroundService _queuedBackgroundService;
private readonly IComputationJobStatusService _computationJobStatusService;
public ComputationController(
IQueuedBackgroundService queuedBackgroundService,
IComputationJobStatusService computationJobStatusService)
{
_queuedBackgroundService = queuedBackgroundService;
_computationJobStatusService = computationJobStatusService;
}
[HttpPost, Route("beginComputation")]
[ProducesResponseType(StatusCodes.Status202Accepted, Type = typeof(JobCreatedModel))]
public async Task<IActionResult> BeginComputation([FromBody] JobParametersModel obj)
{
return Accepted(
await _queuedBackgroundService.PostWorkItemAsync(obj).ConfigureAwait(false));
}
[HttpGet, Route("computationStatus/{jobId}")]
[ProducesResponseType(StatusCodes.Status200OK, Type = typeof(JobModel))]
[ProducesResponseType(StatusCodes.Status404NotFound, Type = typeof(string))]
public async Task<IActionResult> GetComputationResultAsync(string jobId)
{
var job = await _computationJobStatusService.GetJobAsync(jobId).ConfigureAwait(false);
if(job != null)
{
return Ok(job);
}
return NotFound($"Job with ID `{jobId}` not found");
}
[HttpGet, Route("getAllJobs")]
[ProducesResponseType(StatusCodes.Status200OK,
Type = typeof(IReadOnlyDictionary<string, JobModel>))]
public async Task<IActionResult> GetAllJobsAsync()
{
return Ok(await _computationJobStatusService.GetAllJobsAsync().ConfigureAwait(false));
}
[HttpDelete, Route("clearAllJobs")]
[ProducesResponseType(StatusCodes.Status200OK)]
[ProducesResponseType(StatusCodes.Status401Unauthorized)]
public async Task<IActionResult> ClearAllJobsAsync([FromQuery] string permission)
{
if(permission == "this is flakey security so this can be run as a public demo")
{
await _computationJobStatusService.ClearAllJobsAsync().ConfigureAwait(false);
return Ok();
}
return Unauthorized();
}
}
Working Example
For as long as this question is active, I will maintain a working example you can try out. For this specific example, you can specify how many iterations you would like to run. To simulate long-running work, each iteration is 1 second. So, if you set the iteration value to 60, it will run that job for 60 seconds.
While it's running, run the computationStatus/{jobId} or getAllJobs endpoint. You can watch all the jobs update in real time.
This example is far from a fully-functioning-covering-all-edge-cases-full-blown-ready-for-production example, but it's a good start.
Conclusion
After a few years of working in the back-end, I have seen a lot of issues arise by not knowing all the "rules" of the back-end. Hopefully this answer will shed some light on issues I had in the past and hopefully this saves you from having to deal with said problems.
One option could be to try out Azure Durable Functions, which are more oriented to long-running jobs that warrant checkpoints and state as against attempting to finish within the context of the triggering request. It also has the concept of fan-out/fan-in, in case what you're describing could be divided into smaller jobs with an aggregated result.
If just raw compute is the goal, Azure Batch might be a better option since it facilitates that scaling.
I assume the actual work that needs be done is something other than iterating over a loop doing nothing, so in terms of possible parallelization I can't offer much help right now. Is the work CPU intensive or IO related?
When it comes to long running work in an Azure App Service, one of the option is to use a Web Job. A possible solution would be to post the request for computation to a queue (Storage Queue or Azure Message Bus Queues). The webjob then processes those messages and possibly puts a new message on another queue that the requester can use to handle the results.
If the time needed for processing is guaranteed to be less than 10 minutes you could replace the Web Job with an Queue Triggered Azure Function. It is a serverless offering on Azure with great scaling possibilities.
Another option is indeed using a Service Worker or an instance of an IHostingService and do some queue processing there.
Since you're saying that your computation succeeds at fewer iterations, a simple solution is to simply save your results periodically and resume the computation.
For example, say you need to perform 240 Billion iterations, and you know that the highest number of iterations to perform reliably is 3 Billion iterations, I would set up the following:
A slave, that actually performs the task (240Billion iterations)
A master that periodically received input from the slave about progress.
The slave can periodically send a message to the master (say once every 2billion iterations ?). This message could contain whatever is relevant to resume the computation should the computation be interrupted.
The master should keep track of the slave. If the master determines that the slave has died / crashed / whatever, the master should simply create a new slave which should resume computation from the last reported position.
How exactly you implement the master and slave is a matter of your personal preference.
Rather than have a single loop perform 240 billion iterations, if you can split your computation across nodes, I would try to simultaneously compute the solution in parallel across as many nodes as possible.
I personally use node.js for multicore projects. Although you are using asp.net, I include this example of node.js to illustrate the architecture that works for me.
Node.js on multi-core machines
https://dzone.com/articles/multicore-programming-in-nodejs
As Noah Stahl has mentioned in his answer, Azure Durable Functions and Azure Batch seem like options to help you achieve your goal on your platform. Please see his answer for more details.
The standard answer is to use asynchronous messaging. I have a blog series on the topic. This is particularly the case since you're already in Azure.
You already have an Azure web app service, but now you want to run code outside of a request - "request-extrinsic code". The proper way to run that code is in a separate process - Azure Functions or Azure WebJobs are a good match for Azure webapps.
First, you want a durable queue. Azure Storage Queues are a good fit since you're in Azure anyway. Then your webapi can just write a message into the queue and return. The important part here is that this is a durable queue, not an in-memory queue.
Meanwhile, the Azure Function / WebJob is processing that queue. It will pick up the work from the queue and execute it.
The final piece of the puzzle is the completion notification. This is a pretty common approach:
I can adjust my HTTP controller to instead have three (3) POST methods. Thus POST1 would mean start a task with the inbound object. POST2 means tell me if it is finished. POST3 means give me the outbound object.
To do this, your background processor should save the "in-progress" / "complete/result" state somewhere where the webapi process can access it. If you already have a shared database (and it makes sense to keep results), then this may be the easiest choice. I would also consider using Azure Cosmos DB, which has a nice time-to-live setting so the background service can inject the results that are "good for 24 hours" or whatever, after which they're automatically cleaned up.

Concurrency in Message Driven Bean - Thread safe Java EE5 vs. EE6

I have a situation where I need a set of operations be enclosed into a single transaction and be thread safe from a MDB.
If thread A executes the instruction 1, do not want other threads can read, at least not the same, data that thread A is processing.
In the code below since IMAGE table contains duplicated data, coming from different sources, this will lead in a duplicated INFRANCTION. Situation that needs to be avoided.
The actual solution that I found is declaring a new transaction for each new message and synchronize the entire transaction.
Simplifying the code:
#Stateless
InfranctionBean{
#TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
checkInfranction(String plate){
1. imageBean.getImage(plate); // read from table IMAGE
2. infranctionBean.insertInfranction(String plate); // insert into table INFRANCTION
3. imageBean.deleteImage(String plate); //delete from table IMAGE
}
}
#MessageDriven
public class ImageReceiver {
private static Object lock = new Object();
public void onMessage(Message msg){
String plate = msg.plate;
synchronized (lock) {
infanctionBean.checkInfranction(plate);
}
}
}
I am aware that using synchronized blocks inside the EJB is not recommanded by EJB specification. This can lead even in problems if the applicaton server runs in two node cluster.
Seems like EE6 has introduced a solution for this scenario, which is the EJB Singleton.
In this case, my solution would be something like this:
#ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
#Singleton
InfranctionBean{
#Lock(LockType.WRITE)
checkInfranction(String plate){
1...
2...
3...
}
}
And from MDB would not be neccessary the usage of synchronized block since the container will handle the concurrency.
With #Lock(WRITE) the container guarantees the access of single thread inside checkInfranction().
My queston is: How can I handle this situation in EE5? There is a cleaner solution without using synchronized block?
Environment: Java5,jboss-4.2.3.GA,Oracle10.
ACTUAL SOLUTION
#Stateless
InfranctionBean{
#TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
checkInfranction(String plate){
1. imageBean.lockImageTable(); // lock table IMAGE in exclusive mode
2. imageBean.getImage(plate); // read from table IMAGE
3. infranctionBean.insertInfranction(String plate); // insert into table INFRANCTION
4. imageBean.deleteImage(String plate); //delete from table IMAGE
}
}
#MessageDriven
public class ImageReceiver {
public void onMessage(Message msg){
infanctionBean.checkInfranction(msg.plate);
}
}
On 20.000 incoming messages (half of them simultaneously) seems the application works ok.
#Lock(WRITE) is only a lock within a single application/JVM, so unless you can guarantee that only one application/JVM is accessing the data, you're not getting much protection anyway. If you're only looking for single application/JVM protection, the best solution in EE 5 would be a ReadWriteLock or perhaps a synchronized block. (The EJB specification has language to dissuade applications from doing this to avoid compromising the thread management of the server, so take care that you don't block indefinitely, that you don't ignore interrupts, etc.)
If you're looking for a more robust cross-application/JVM solution, I would use database locks or isolation levels rather than trying to rely on JVM synchronized primitives. That is probably the best solution regardless of the EJB version being used.

<Spring Batch> Why does making ItemReader thread-safe leads us to loosing restartability?

I have a multi-threaded batch job reading from a DB and I am concerned about different threads re-reading records as ItemReader is not thread safe in Spring batch. I went through SpringBatch FAQ section which states that
You can synchronize the read() method (e.g. by wrapping it in a delegator that does the synchronization). Remember that you will lose restartability, so best practice is to mark the step as not restartable and to be safe (and efficient) you can also set saveState=false on the reader.
I want to know why will I loose re-startability in this case? What has restartability got to do with synchronizing my read operations? It can always try again,right?
Also, will this piece of code be enough for synchronizing the reader?
public SynchronizedItemReader<T> implements ItemReader<T> {
private final ItemReader<T> delegate;
public SynchronizedItemReader(ItemReader<T> delegate) {
this.delegate = delegate;
}
public synchronized T read () {
return delegate.read();
}
}
When using an ItemReader with multithreads, the lack of restartability is not about the read itself. It's about saving the state of the reader which occurs in the update method. The issue is that there needs to be coordination between the calls to read() - the method providing the data and update() - the method persisting the state. When you use multiple threads, the internal state of the reader (and therefore the update() call) may or may not reflect the work that has been done. Take for example the FlatFileItemReader using a chunk size of 5 and running on multiple threads. You could have thread1 having read 5 items (time to update), yet thread 2 could have read an additional 3. This means that the call to update would save that 8 items have been read. If the chunk on thread 2 fails, the state would due incorrect and the restart would miss the three items that were already read.
This is not to say that it is impossible to write a thread safe ItemReader. However, as your example above illustrates, if delegate is a stateful ItemReader (implements ItemStream as well), the state will not be persisted correctly with calls to update (in fact, your example above doesn't even take the ItemStream aspect of stageful readers into account).
If you want make restartable your job, with parallel execution of items, you can save item, that reader read plus state of this item by yourself.

Distributed\Parallel computing using app-engine (java api)

I want to use the master-slave (worker) paradigm, to solve a problem. I have read that opening new threads manually (for example using thread pool) is not available and I need to use queue, attached code example:
class MyDeferred implements DeferredTask {
#Override
public void run() {
// Do something interesting
}
};
MyDeferred task = new MyDeferred();
// Set instance variables etc as you wish
Queue queue = QueueFactory.getDefaultQueue();
queue.add(withPayload(task));
How can I get the result of the workers (which were added to the queue)?
I need this info, in-order to solve the bigger problem.
Actually you can use threads on GAE, but there are limitations. If you need long-running threads you can use background threads, but this requires you to use backend instances.
If you opt to use task queue, then keep in mind that tasks do not "return" to caller. To aggregate results you'll need to use datastore.
You will have to write the results into the datastore.
Just as a starting point to think about it, you might pass a JobId as a parameter to the tasks, have each task write an entity with the result and the JobId, and then later query the datstore for the given JobId to get all the results.

Resources