How tunneling services like 'Localtunnel' works without SSH? - node.js

I want to understand how my local IP address (localhost) can be exposed to Internet. For that I've read [here] a method of port forwarding using SSH. Which basically does routing from publicly available server to our localhost using SSH.
But I wonder how the service like 'LocalTunnel' works? In above article it's written as following:
There services (localtunnel for example) creates a tunnel from their server back to port 3000 on your dev box. It functions pretty much exactly like an SSH tunnel, but doesn’t require that you have a server.
I've tried reading code from it's github repository and what I understood is:
These services have a server which is publicly available, which generates different URLs, and when we hit that URL, It forward the request to localhost corresponding to that URL.
So basically it's works like a proxy server.
Is these understanding correct? If yes then what I don't understand is that how these server has access to some localhost running on my computer? How it perform request to it? What I'm missing here? Here is the code which I referred.

The Short Answer (TL;DR)
The Remote (i.e. the localtunnel software on your computer) initializes the connection to the Relay (i.e. localtunnel.me) acts as a multiplexing proxy and when Clients (i.e. web browsers) connect, the relay multiplexes the connections between remotes and clients by appending special headers with network information.
Browser <--\ /--> Device
Browser <---- M-PROXY Service ----> Device
Browser <--/ \--> Device
Video Presentation
If you prefer a video preso, I just gave a talk on this at UtahJS Conf 2018, in which I talk a little about all of the other potential solutions as well: SSH Socksv5 proxies (which you mentioned), VPN, UPnP, DHT, Relays, etc:
Access Ability: Access your Devices, Share your Stuff
Slides: http://telebit.cloud/utahjs2018
How localtunnel, ngrok, and Telebit work (Long Answer)
I'm the author of Telebit, which provides service with similar features to what ngrok, localtunnel, and libp2p provide (as well as open source code for both the remote/client and relay/server to run it yourself).
Although I don't know the exact internals of how localtunnel is implemented, I can give you an explanation of how it's generally done (and how we do it), and it's most likely nearly identical to how they do it.
The magic that you're curious about happens in two places: the remote socket and the multiplexer.
How does a remote client access the server on my localhost?
1. The Remote Socket
This is pretty simple. When you run a "remote" (telebit, ngrok, and localtunnel all work nearly the same in this regard), it's actually your computer that initiates the request.
So imagine that the relay (the localtunnel proxy in your case) uses port 7777 to receive traffic from "remotes" (like your computer) and your socket number (randomly chosen source address on your computer) is 1234:
Devices: [Your Computer] (tcp 1234:7777) [Proxy Server]
Software: [Remote] -----------------------> [Relay]
(auth & request 5678)
However, the clients (such as browsers, netcat, or other user agents) that connect to you actually also initiate requests with the relay.
Devices: [Proxy Service] (tcp 5678) [Client Computer]
Software: [Relay] <------------------------ [netcat]
If you're using tcp ports, then the relay service keeps an internal mapping, much like NAT
Internal Relay "Routing Table"
Rule:
Socket remote[src:1234] --- Captures ------> ALL_INCOMING[dst:5678]
Condition:
Incoming client[dst:5678] --- MATCHES -------> ALL_INCOMING[dst:5678]
Therefore:
Incoming client[dst:5678] --- Forwards To ---> remote[src:1234]
Both connections are "incoming" connections, but the remote connection on the "south end" is authorized to receive traffic coming from another incoming source (without some form of authorized session anyone could claim use of that port or address and hijack your traffic).
[Client Computer] (tcp 5678) [Proxy Service] (tcp 1234) [Your Computer]
[netcat] --------------> <--[Relay]--> <------------ [remote]
2. The Multiplexer
You may have noticed that there's a critical flaw in the description above. If you just route the traffic as-is, your computer (the remote) could only handle one connection at a time. If another client (browser, netcat, etc) hopped on the connection, your computer wouldn't be able to tell which packets came from where.
Browser <--\ /--> Device
Browser <---- M-PROXY Service ----> Device
Browser <--/ \--> Device
Essentially what the relay (i.e. localtunnel proxy) and the remote (i.e. your computer) do is place a header in front of all data that is to be received by the client. It needs to be something very similar to HAProxy's The PROXY Protocol, but works for non-local traffic as well. It could look like this:
<src-address>,<src-port>,<sni>,<dst-port>,<protocol-guess>,<datalen>
For example
172.2.3.4,1234,example.com,443,https,1024
That info could be sent exactly before or append to each data packet that's routed.
Likewise, when the remote responds to the relay, it has to include that information so that the relay knows which client the data packet is responding to.
See https://www.npmjs.com/package/proxy-packer for long details
Sidenote/Rant: Ports vs TLS SNI
The initial explanation I gave using tcp ports, because it's easy to understand. However, localtunnel, ngrok, and telebit all have the ability to use tls servername indicator (SNI) instead of relying on port numbers.
[Client Computer] (https 443) [Proxy Service] (wss 443) [Your Computer]
[netcat+openssl] --------------------> <--[Relay]--> <------------ [remote]
(or web browser) (sni:xyz.somerelay.com) (sni:somerelay.com)
MITM vs p2p
There are still a few different ways you can go about this (and this is where I want to give a shameless plug for telebit because if you're into decentralization and peer-to-peer, this is where we shine!)
If you only use the tls sni for routing (which is how localtunnel and ngrok both work by default last time I checked) all of the traffic is decrypted at the relay.
Anther way requires ACME/Let's Encrypt integration (i.e. Greenlock.js) so that the traffic remains encrypted, end-to-end, routing the tls traffic to the client without decrypting it. This method functions as peer-to-peer channel for all practical purposes (the relay acts as just another opaque "switch" on the network of the Internet, unaware of the contents of the traffic).
Furthermore, if https is used both for remotes (for example, via Secure WebSockets) and the clients, then the clients look just like any other type of https request and won't be hindered by poorly configured firewalls or other harsh / unfavorable network conditions.
Now, solutions built on libp2p also give you a virtualized peer connection, but it's far more indirect and requires routing through untrusted parties. I'm not a fan of that because it's typically slower and I see it as more risky. I'm a big believer than network federation will win out over anonymization (like libp2p) in the long. (for our use case we needed something that could be federated - run by independently trusted parties- which is why we built our solution the way that we did)

Related

TCP hole punching in Node without a server

I'm trying to follow the code given here to implement NAT hole punching in Node.js. I'd like to know if the server is strictly necessary. Having read about hole punching, I am under the impression that the purpose of the server is to allow the clients to exchange some information (including but not limited to their addresses and ports they want to communicate on) so that they can proceed to talk directly. Assuming the clients already had each other's information (again, including but not limited to their addresses and ports), would the server still be necessary? If so why and if not, how could this be implemented?
For instance, say one were to build an application where client_A prints out all information that would have been transmitted to the server for user_A to read, who then sends this to user_B, who then submits this info to client_B (this could be done via email for example). Wouldn't this avoid the need for a server?
Here is another explanation of why I think it might be possible to remove the server in the middle:
In NAT hole punching (assuming I understand it correctly), the communications begin when client_A sends a message to the server. The message contains some information that the server then passes on to client_B when client_B contacts the server. After this point, client_A and client_B are able to communicate directly without the need for the server. I am under the impression that once a direct connection between client_A and client_B has been established, the server could go offline and the two clients would still be able to communicate directly with one another. If this is the case, then I would imagine that any information that is being used to maintain this connection (be that addresses, ports, or any other kind of info) could be exchanged through any other channel (eg: email, a handwritten letter, a voice call, etc) at the beginning of the protocol, and then the connection could be established without ever needing the server.
Regarding 'tricking' the router
As manishig pointed out to me in a comment (thanks), NAT hole punching also requires tricking the router. If I understand correctly (please correct me if not) the router is tricked by having the router store the info for directing incoming packets from the server to client_A, however, these packets are actually coming from client_B after the initial phase of the protocol. If this is a correct description of the problem, is there a way to trick the router that doesn't require using a server?
There are ways to communicate between two remote computers over the internet without an intermidiate server, but IMO it is not the preferred way.
Why an intermidiate server is needed?
If client_A and client_B are both in the same LAN (e.g your home/office network) you can make sure (configure on the clients side and/or the router) that they will have a static ip address over this LAN and they can just talk freely.
E.G: If client_A is listening on port 8080, client_B can create a connection to client_A_ip on port 8080
Over the internet any packet sent is passed through NAT usually at least twice. One time after going through your LAN (e.g your home/office router) and at least once over an ISP endpoint. Which means you have no controll over the public ip and port assigned to your packet.
Now not only that you don't have controll over your packet's assigned public ip and port, these are also not static. They won't change while you have an active TCP connection, but you don't have any other guarantee from your ISP regarding your assigned public ip and port.
The intermediate server`s purpose is to dynamically update each client with it's peer info and also keeping the tcp connection open, so that peer to peer comunication will be available.
Alternative solution to an intermidiate server (Not recommended)
If you want your clients to communicate without an intermidiate server you can buy a public static ip from your ISP (if they support it) and then there are ways you can make (with some config) that one of your clients have a public static ip and port that the other client can connect to.
But I wouldn't recommend it, since it requires some understanding in IT and security risks.
Also if both client's are portable and connect to different networks all the time it's not a valid solution

Multiple tcp services on the same port

I'm working on a project where some clients (embedded linux systems) needs to connect to a main server using so far at least two protocols: HTTPS and SSH. One of the requirement is that only one flow is allowed from every client to the server, so I've to found a way to make the two services works on the same port.
One solution that I was thinking about is to use the iptables markers: on the client side mark the packets for SSH with 0x1, the packets for HTTPS with 0x2 and then on the server side, based on the marker, redirect the packets to the right service listening on the local interface. Is it an acceptable solution? Are the markers kept by the network routers or is only something working locally on the same machine for iptables?
And anyway, if you can advice about a different solution, of course it's welcome!
More for other users finding this question in the future:
https://github.com/yrutschle/sslh has what you might need. I haven't used it (yet) but planning on it.
From the Github site:
sslh -- A ssl/ssh multiplexer
sslh accepts connections on specified ports, and forwards them further based on tests performed on the first data packet sent by the remote client.
Probes for HTTP, SSL, SSH, OpenVPN, tinc, XMPP are implemented, and any other protocol that can be tested using a regular expression, can be recognised. A typical use case is to allow serving several services on port 443 (e.g. to connect to SSH from inside a corporate firewall, which almost never block port 443) while still serving HTTPS on that port.
Hence sslh acts as a protocol demultiplexer, or a switchboard. Its name comes from its original function to serve SSH and HTTPS on the same port.

Is there a way to test if a computer's connection is firewalled?

I'm writing a piece of P2P software, which requires a direct connection to the Internet. It is decentralized, so there is no always-on server that it can contact with a request for the server to attempt to connect back to it in order to observe if the connection attempt arrives.
Is there a way to test the connection for firewall status?
I'm thinking in my dream land where wishes were horses, there would be some sort of 3rd-party, public, already existent servers to whom I could send some sort of simple command, and they would send a special ping back. Then I could simply listen to see if that arrives and know whether I'm behind a firewall.
Even if such a thing does not exist, are there any alternative routes available?
Nantucket - does your service listen on UDP or TCP?
For UDP - what you are sort of describing is something the STUN protocol was designed for. It matches your definition of "some sort of simple command, and they would send a special ping back"
STUN is a very "ping like" (UDP) protocol for a server to echo back to a client what IP and port it sees the client as. The client can then use the response from the server and compare the result with what it thinks its locally enumerated IP address is. If the server's response matches the locally enumerated IP address, the client host can self determinte that it is directly connected to the Internet. Otherwise, the client must assume it is behind a NAT - but for the majority of routers, you have just created a port mapping that can be used for other P2P connection scenarios.
Further, you can you use the RESPONSE-PORT attribute in the STUN binding request for the server to respond back to a different port. This will effectively allow you to detect if you are firewalled or not.
TCP - this gets a little tricky. STUN can partially be used to determine if you are behind a NAT. Or simply making an http request to whatismyip.com and parsing the result to see if there's a NAT. But it gets tricky, as there's no service on the internet that I know of that will test a TCP connection back to you.
With all the above in mind, the vast majority of broadband users are likely behind a NAT that also acts as a firewall. Either given by their ISP or their own wireless router device. And even if they are not, most operating systems have some sort of minimal firewall to block unsolicited traffic. So it's very limiting to have a P2P client out there than can only work on direct connections.
With that said, on Windows (and likely others), you can program your app's install package can register with the Windows firewall so your it is not blocked. But if you aren't targeting Windows, you may have to ask the user to manually fix his firewall software.
Oh shameless plug. You can use this open source STUN server and client library which supports all of the semantics described above. Follow up with me offline if you need access to a stun service.
You might find this article useful
http://msdn.microsoft.com/en-us/library/aa364726%28v=VS.85%29.aspx
I would start with each os and ask if firewall services are turned on. Secondly, I would attempt the socket connections and determine from the error codes if connections are being reset or timeout. I'm only familiar with winsock coding, so I can't really say much for Linux or mac os.

How to broker secure connection across firewalls using untrusted host?

I have an interesting network security challenge that I can't figure out the best way to attack.
I need to provide a way to allow two computers (A and B) that are behind firewalls to make a secure connection to each other using only a common "broker" untrusted server on the internet (somewhere like RackSpace). (the server is considered untrusted because the customers behind the firewalls won't trust it since it is on an open server) I can not adjust the firewall settings to allow the networks to directly connect to each other because the connections are no known ahead of time.
This is very similar to a NAT to NAT connection problem like that handled by remote desktop help tools (crossloop, copilot, etc).
What I would really like to find is a way to open an SSL connection between the two hosts and have the public server broker the connection. Preferably when host A tries to connect to host B, it should have to provide a token that the broker can check with host B before establishing the connection.
To add another wrinkle to this, the connection mechanism needs to support two types of communication. First, HTTP request/response to a REST web service and second persistent socket connection(s) to allow for real-time message passing.
I have looked at the techniques I know about like OpenSSL using certificates, OAuth, etc, but I don't see anything that quite does what I need.
Has anyone else handled something like this before? Any pointers?
You can solve your problem with plain SSL.
Just have the untrusted server forward connections between the client hosts as opaque TCP connections. The clients then establish an end-to-end SSL connection over that forwarded TCP tunnel - with OpenSSL, one client calls SSL_accept() and the other calls SSL_connect().
Use certificates, probably including client certificates, to verify that the other end of the SSL connection is who you expect it to be.
(This is conceptually similar to the way that HTTPS connections work over web proxies - the browser just says "connect me to this destination", and establishes an SSL connection with the desired endpoint. The proxy just forwards encrypted SSL data backwards and forwards, and since it doesn't have the private key for the right certificate, it can't impersonate the desired endpoint).
In general, SSL is packet-based protocol (for the purpose of solving your task). If you can have the host forward the packets back and forth, you can easily have SSL-secured communication channel. One thing you need is something like our SSL/TLS components, which allow any transport and not just sockets. I.e. the component tells your code "send this packet to the other side" or "do you have anything for me to receive?" and your code communicates with your intermediate server.

NAT, P2P and Multiplayer

How can an application be designed such that two peers can communicate directly with each other (assuming both know each other's IPs), but without outgoing connections? That's, no ports will be opened. Bitorrent for example does it, but multiplayer games (as far as I know) require port forwarding.
I'm not sure what you mean by No Outgoing Connections, I'm going to assume like everyone else you meant no Incoming Connections (they are behind a NAT/FW/etc).
The most common one mentioned so far is UPNP, which in this context is a protocol that allows you as a computer to talk to the Gateway and say forward me this port because I want someone on the outside to be able to talk to me. UPNP is also designed for other things, but this is the common thing for home networking (Actually it's one of many definitions).
There are also more common and slightly more reliable ways if you don't own the network. The most common is called STUN but if I recall correctly there are a few variants. Basically you use a third party server that allows incoming connections to try and coordinate a communication channel. Basically, what you do is send a UDP packet to you're peer, which will open up you're NAT for a response, but gets dropped on you're peer's NAT (since no forwarding rule exists yet). Through the connection to the intermediary, they are then told to do the same, which now opens up their NAT, and matches the existing rule in you're NAT. Now the communications can proceed. Their is a variant of this which will allow a TCP/IP connection as well by sending SYN and SYN-ACK messages with some coordination.
The Wikipedia articles I've linked to has links to the relevant rfc's for these protocols on precisely how they work. Essentially it comes down to, there isn't an easy answer, as this is a very network centric problem.
You need a "meeting point" in the network somewhere: the participants "meet" at a "gateway" of some sort and the said "gateway function" takes care of the forwarding.
At least that's one way of doing it: I won't try to comment on the details of Bittorrent... I am sure you can google for links.
UPNP dealt with this mostly in the recent years, but the need to open ports is because the application has been coded to listen on a specific port for a response.
Ports beneath 1024 are called "registered" because they've been assigned a port number because a company paid for it. This doesn't mean you couldn't use port 53 for a webserver or SSH, just that most will assume when they see it that they are dealing with DNS. Ports above 1024 are unregistered, so there's no association - your web browser, be it Internet Explorer/Firefox/etc, is using an unregistered port to send the request to the StackOverflow webserver(s) on port 80. You can use:
netstat -a
..on windows hosts to see what network connections are currently established, including the port involved.
UPNP can be used to negotiate with the router to open and forward a port to your application. Even bit-torrent needs at least one of the peers to have an open port to enable p2p connections. There is no need for both peers to have an open port however, since they both communicate with the same server (tracker) that lets them negotiate and determine who has an open port.
An alternative is an echo-server / relay-server somewhere on the internet that both peers trust, and have that relay all the traffic.
The "problem" with this solution is that the echo-server needs to have lots of bandwidth to accomodate all connected peers since it relays all the traffic rather than establish p2p connections.
Check out EchoWare: http://www.echogent.com/tech.htm

Resources