How do I get a handle on deep stacks of functors in Haskell? - haskell

Now and then I find myself mapping over a deep stack of functors, e.g. a parser for some collection of optional values:
-- parse a rectangular block of characters to a map of
-- coordinate to the character, or Nothing for whitespace
parseRectangle :: Parser (Map (Int, Int) (Maybe Char))
data Class = Letter | Digit | Other
classify :: Char -> Class
parseClassifiedRectangle :: Parser (Map (Int, Int) (Maybe Class))
parseClassifiedRectangle = fmap (fmap (fmap classify)) parseRectangle
What are some good ways around the nested fmaps? Oftentimes it's not as clear as here, and I end up adding fmaps until the code type checks. Simple code ends up as a mess of fmap boilerplate, where what I really want to express is "lift this function to the appropriate depth and apply it to the contained type".
Some ideas, none of which I've found particularly satisfactory so far:
define fmap2 :: (Functor f, Functor g) => (a -> b) -> g (f a) -> g (f b) and friends
define concrete helpers, like mapMaybeMap :: (a -> b) -> Map k (Maybe a) -> Map k (Maybe b)
introduce newtype wrappers for the functor stack, and make those instances of Functor, like newtype MaybeMapParser a = Parser (Map (Int, Int) (Maybe a))
Do others run into this problem in large codebases? Is it even a problem? How do you deal with it?

Let me break the ice on this interesting question that people seem shy about answering. This question probably comes down to more of a matter of style than anything, hence the lack of answers.
My approach would be something like the following:
parseClassifiedRectangle :: Parser (Map (Int, Int) (Maybe Class))
parseClassifiedRectangle = doClassify <$> parseRectangle
where
doClassify = Map.map (fmap classify)
I try to use <$> for the top level Functor, and save fmap for interior functors; although that doesn't always work too well in practice.
I've used a local named binding. But even if doClassify were left as f it sometimes helps clarify a high level view of whats happening: "on the parsed value we are doing a thing, see below for what thing does." I don't know what the efficiency concerns are for making a binding.
I've also used the specific instance of fmap for the Map instance. This helps orient me within the stack and gives a signpost for the final fmap.
Hope this helps.

Related

Hidden forall quantified types in ReifiedTraversal

This question really is more generic, since while I was asking it I found out how to fix it in this particular case (even though I don't like it) but I'll phrase it in my particular context.
Context:
I'm using the lens library and I found it particularly useful to provide functionality for "adding" traversals (conceptually, a traversal that traverses all the elements in both original traversals). I did not find a default implementation so I did it using Monoid. In order to be able to implement an instance, I had to use the ReifiedTraversal wrapper, which I assume is in the library precisely for this purpose:
-- Adding traversals
add_traversals :: Semigroup t => Traversal s t a b -> Traversal s t a b -> Traversal s t a b
add_traversals t1 t2 f s = liftA2 (<>) (t1 f s) (t2 f s)
instance Semigroup t => Semigroup (ReifiedTraversal s t a b) where
a1 <> a2 = Traversal (add_traversals (runTraversal a1) (runTraversal a2))
instance Semigroup s => Monoid (ReifiedTraversal' s a) where
mempty = Traversal (\_ -> pure . id)
The immediate application I want to extract from this is being able to provide a traversal for a specified set of indices in a list. Therefore, the underlying semigroup is [] and so is the underlying Traversable. First, I implemented a lens for an individual index in a list:
lens_idx :: Int -> Lens' [a] a
lens_idx _ f [] = error "No such index in the list"
lens_idx 0 f (x:xs) = fmap (\rx -> rx:xs) (f x)
lens_idx n f (x:xs) = fmap (\rxs -> x:rxs) (lens_idx (n-1) f xs)
All that remains to be done is to combine these two things, ideally to implement a function traversal_idxs :: [Int] -> Traversal' [a] a
Problem:
I get type checking errors when I try to use this. I know it has to do with the fact that Traversal is a type that includes a constrained forall quantifier in its definition. In order to be able to use the Monoid instance, I need to first reify the lenses provided by lens_idx (which are, of course, also traversals). I try to do this by doing:
r_lens_idx :: Int -> ReifiedTraversal' [a] a
r_lens_idx = Traversal . lens_idx
But this fails with two errors (two versions of the same error really):
Couldn't match type ‘f’ with ‘f0’...
Ambiguous type variable ‘f0’ arising from a use of ‘lens_idx’
prevents the constraint ‘(Functor f0)’ from being solved...
I understand this has to do with the hidden forall f. Functor f => in the Traversal definition. While writing this, I realized that the following does work:
r_lens_idx :: Int -> ReifiedTraversal' [a] a
r_lens_idx idx = Traversal (lens_idx idx)
So, by giving it the parameter it can make the f explicit to itself and then it can work with it. However, this feels extremely ad-hoc. Specially because originally I was trying to build this r_lens_idx inline in a where clause in the definition of the traversal_idxs function (in fact... on a function defining this function inline because I'm not really going to use it that often).
So, sure, I guess I can always use lambda abstraction, but... is this really the right way to deal with this? It feels like a hack, or rather, that the original error is an oversight by the type-checker.
The "adding" of traversals that you want was added in the most recent lens release, you can find it under the name adjoin. Note that it is unsound to use if your traversals overlap at all.
I am replying to my own question, although it is only pointing out that what I was trying to do with traversals was not actually possible in that shape and how I overcame it. There is still the underlying problem of the hidden forall quantified variables and how is it possible that lambda abstraction can make code that does not type check suddenly type check (or rather, why it did not type check to start with).
It turns out my implementation of Monoid for Traversal was deeply flawed. I realized when I started debugging it. For instance, I was trying to combine a list of indices, and a function that would return a lens for each index, mapping to that index in a list, to a traversal that would map to exactly those indices. That is possible, but it relies on the fact that List is a Monad, instead of just using the Applicative structure.
The function that I had written originally for add_traversal used only the Applicative structure, but instead of mapping to those indices in the list, it would duplicate the list for each index, concatenating them, each version of the list having applied its lens.
When trying to fix it, I realized I needed to use bind to implement what I really wanted, and then I stumbled upon this: https://www.reddit.com/r/haskell/comments/4tfao3/monadic_traversals/
So the answer was clear: I can do what I want, but it's not a Monoid over Traversal, but instead a Monoid over MTraversal. It still serves my purposes perfectly.
This is the resulting code for that:
-- Monadic traversals: Traversals that only work with monads, but they allow other things that rely on the fact they only need to work with monads, like sum.
type MTraversal s t a b = forall m. Monad m => (a -> m b) -> s -> m t
type MTraversal' s a = MTraversal s s a a
newtype ReifiedMTraversal s t a b = MTraversal {runMTraversal :: MTraversal s t a b}
type ReifiedMTraversal' s a = ReifiedMTraversal s s a a
-- Adding mtraversals
add_mtraversals :: Semigroup t => MTraversal r t a b -> MTraversal s r a b -> MTraversal s t a b
add_mtraversals t1 t2 f s = (t2 f s) >>= (t1 f)
instance Semigroup s => Semigroup (ReifiedMTraversal' s a) where
a1 <> a2 = MTraversal (add_mtraversals (runMTraversal a1) (runMTraversal a2))
instance Semigroup s => Monoid (ReifiedMTraversal' s a) where
mempty = MTraversal (\_ -> return . id)
Note that MTraversal is still a LensLike and an ASetter, so you can use many operators from the lens package, like .~.
As I mentioned, though, I still have to use lambda abstraction when using this for my purposes due to the forall quantifier being in an uncomfortable place, and I'd love if someone could clarify what the heck is up with the type checker in that regard.

Maybe monad and a list

Ok, so I am trying to learn how to use monads, starting out with maybe. I've come up with an example that I can't figure out how to apply it to in a nice way, so I was hoping someone else could:
I have a list containing a bunch of values. Depending on these values, my function should return the list itself, or a Nothing. In other words, I want to do a sort of filter, but with the consequence of a hit being the function failing.
The only way I can think of is to use a filter, then comparing the size of the list I get back to zero. Is there a better way?
This looks like a good fit for traverse:
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
That's a bit of a mouthful, so let's specialise it to your use case, with lists and Maybe:
GHCi> :set -XTypeApplications
GHCi> :t traverse #[] #Maybe
traverse #[] #Maybe :: (a -> Maybe b) -> [a] -> Maybe [b]
It works like this: you give it an a -> Maybe b function, which is applied to all elements of the list, just like fmap does. The twist is that the Maybe b values are then combined in a way that only gives you a modified list if there aren't any Nothings; otherwise, the overall result is Nothing. That fits your requirements like a glove:
noneOrNothing :: (a -> Bool) -> [a] -> Maybe [a]
noneOrNothing p = traverse (\x -> if p x then Nothing else Just x)
(allOrNothing would have been a more euphonic name, but then I'd have to flip the test with respect to your description.)
There are a lot of things we might discuss about the Traversable and Applicative classes. For now, I will talk a bit more about Applicative, in case you haven't met it yet. Applicative is a superclass of Monad with two essential methods: pure, which is the same thing as return, and (<*>), which is not entirely unlike (>>=) but crucially different from it. For the Maybe example...
GHCi> :t (>>=) #Maybe
(>>=) #Maybe :: Maybe a -> (a -> Maybe b) -> Maybe b
GHCi> :t (<*>) #Maybe
(<*>) #Maybe :: Maybe (a -> b) -> Maybe a -> Maybe b
... we can describe the difference like this: in mx >>= f, if mx is a Just-value, (>>=) reaches inside of it to apply f and produce a result, which, depending on what was inside mx, will turn out to be a Just-value or a Nothing. In mf <*> mx, though, if mf and mx are Just-values you are guaranteed to get a Just value, which will hold the result of applying the function from mf to the value from mx. (By the way: what will happen if mf or mx are Nothing?)
traverse involves Applicative because the combining of values I mentioned at the beginning (which, in your example, turns a number of Maybe a values into a Maybe [a]) is done using (<*>). As your question was originally about monads, it is worth noting that it is possible to define traverse using Monad rather than Applicative. This variation goes by the name mapM:
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)
We prefer traverse to mapM because it is more general -- as mentioned above, Applicative is a superclass of Monad.
On a closing note, your intuition about this being "a sort of filter" makes a lot of sense. In particular, one way to think about Maybe a is that it is what you get when you pick booleans and attach values of type a to True. From that vantage point, (<*>) works as an && for these weird booleans, which combines the attached values if you happen to supply two of them (cf. DarthFennec's suggestion of an implementation using any). Once you get used to Traversable, you might enjoy having a look at the Filterable and Witherable classes, which play with this relationship between Maybe and Bool.
duplode's answer is a good one, but I think it is also helpful to learn to operate within a monad in a more basic way. It can be a challenge to learn every little monad-general function, and see how they could fit together to solve a specific problem. So, here's a DIY solution that shows how to use do notation and recursion, tools which can help you with any monadic question.
forbid :: (a -> Bool) -> [a] -> Maybe [a]
forbid _ [] = Just []
forbid p (x:xs) = if p x
then Nothing
else do
remainder <- forbid p xs
Just (x : remainder)
Compare this to an implementation of remove, the opposite of filter:
remove :: (a -> Bool) -> [a] -> [a]
remove _ [] = []
remove p (x:xs) = if p x
then remove p xs
else
let remainder = remove p xs
in x : remainder
The structure is the same, with just a couple differences: what you want to do when the predicate returns true, and how you get access to the value returned by the recursive call. For remove, the returned value is a list, and so you can just let-bind it and cons to it. With forbid, the returned value is only maybe a list, and so you need to use <- to bind to that monadic value. If the return value was Nothing, bind will short-circuit the computation and return Nothing; if it was Just a list, the do block will continue, and cons a value to the front of that list. Then you wrap it back up in a Just.

Is Haskell designed to encourage Hungarian Notation?

I'm learning Haskell and started noticing common suffixes in functions like:
debugM
mapM_
mapCE
Which is known as Hungarian Notation. But at the same time I can use type classes to write non-ambiguous code like:
show
return
Since functions like map are so common and used in many contexts, why not let type checker to pick correct polymorphic version of map, fmap, mapM, mapM_ or mapCE?
There's a little bit of "Hungarian notation", but it's quite different. In short, Haskell's type system removes the need for most of it.
The map/mapM thing is a neat example. These two functions confer the exact same concept, but cannot be polymorphically represented because abstracting over the difference would be really noisy. So we pick a Hungarian notation instead.
To be clear, the two types are
map :: (a -> b) -> ([a] -> [b])
mapM :: Monad m => (a -> m b) -> ([a] -> m [b])
These look similar, all mapM does is add the monad, but not the same. The structure is revealed when you make the following synonyms
type Arr a b = a -> b
type Klei m a b = a -> m b
and rewrite the types as
map :: Arr a b -> Arr [a] [b]
mapM :: Monad m => Klei m a b -> Klei m [a] [b]
The thing to note is that Arr and Monad m => Klei m are often extremely similar things. They both form a certain structure known as a "category" which allows us to hoist all kinds of computation inside of it. [0]
What we'd like is to abstract over the choice of category with something like
class Mapping cat where
map :: cat a b -> cat [a] [b]
instance Mapping (->) where map = Prelude.map
instance Monad m => Mapping (Klei m) where map = mapM -- in spirit anyway
but it turns out that there is way more to be gained by abstracting over the list part with Functor [1]
class Functor f where
map :: (a -> b) -> (f a -> f b)
instance Functor [] where
map = Prelude.map
instance Functor Maybe where
map Nothing = Nothing
map (Just a) = Just (f a)
and so for simplicity's sake, we use Hungarian notation to make the difference of category instead of rolling it up into Haskell's polymorphism functionality.
[0] Notably, the fact that Klei m is a category implies m is a monad and the category laws become exactly the monad laws. In particular, that's my favorite way for remembering what the monad laws are.
[1] Technically, the sole method of Functor is called fmap not map, but it could and perhaps should have been called just map. The f was added so that the type signature for map remains simple (specialized to lists) and thus is a little less intimidating to beginners. Whether or not that was the right decision is a debate that continues today.
Your assumption is that all of these do roughly the same thing - they don't. map and fmap are pretty much the same function - map is just fmap specialized to the [] functor (either for historical reasons, or so that beginners would get less confusing type errors - I'm not sure).
mapM and mapM_ on the other hand are like map followed by sequence or sequence_ respectively - while what they're doing may look related, they're doing different things. Incidentally, the function that behaves like fmap for monads is... fmap (which is also aliased with a specialized signature to liftM, for historical reasons), as Monads are, by definition, also Functors; note that this is, right now, not enforced by the standard library - a historical oversight that should be corrected with GHC 7.10 if I'm not mistaken.
I don't know what to tell you about debugM and mapCE as I haven't seen these before.

Monad with no wrapped value?

Most of the monad explanations use examples where the monad wraps a value. E.g. Maybe a, where the a type variable is what's wrapped. But I'm wondering about monads that never wrap anything.
For a contrived example, suppose I have a real-world robot that can be controlled, but has no sensors. Maybe I'd like to control it like this:
robotMovementScript :: RobotMonad ()
robotMovementScript = do
moveLeft 10
moveForward 25
rotate 180
main :: IO ()
main =
liftIO $ runRobot robotMovementScript connectToRobot
In our imaginary API, connectToRobot returns some kind of handle to the physical device. This connection becomes the "context" of the RobotMonad. Because our connection to the robot can never send a value back to us, the monad's concrete type is always RobotMonad ().
Some questions:
Does my contrived example seem right?
Am I understanding the idea of a monad's "context" correctly? Am I correct to describe the robot's connection as the context?
Does it make sense to have a monad--such as RobotMonad--that never wraps a value? Or is this contrary to the basic concept of monads?
Are monoids a better fit for this kind of application? I can imagine concatenating robot control actions with <>. Though do notation seems more readable.
In the monad's definition, would/could there be something that ensures the type is always RobotMonad ()?
I've looked at Data.Binary.Put as an example. It appears to be similar (or maybe identical?) to what I'm thinking of. But it also involves the Writer monad and the Builder monoid. Considering those added wrinkles and my current skill level, I think the Put monad might not be the most instructive example.
Edit
I don't actually need to build a robot or an API like this. The example is completely contrived. I just needed an example where there would never be a reason to pull a value out of the monad. So I'm not asking for the easiest way to solve the robot problem. Rather, this thought experiment about monads without inner values is an attempt to better understand monads generally.
TL;DR Monad without its wrapped value isn't very special and you get all the same power modeling it as a list.
There's a thing known as the Free monad. It's useful because it in some sense is a good representer for all other monads---if you can understand the behavior of the Free monad in some circumstance you have a good insight into how Monads generally will behave there.
It looks like this
data Free f a = Pure a
| Free (f (Free f a))
and whenever f is a Functor, Free f is a Monad
instance Functor f => Monad (Free f) where
return = Pure
Pure a >>= f = f a
Free w >>= f = Free (fmap (>>= f) w)
So what happens when a is always ()? We don't need the a parameter anymore
data Freed f = Stop
| Freed (f (Freed f))
Clearly this cannot be a Monad anymore as it has the wrong kind (type of types).
Monad f ===> f :: * -> *
Freed f :: *
But we can still define something like Monadic functionality onto it by getting rid of the a parts
returned :: Freed f
returned = Stop
bound :: Functor f -- compare with the Monad definition
=> Freed f -> Freed f -- with all `a`s replaced by ()
-> Freed f
bound Stop k = k Pure () >>= f = f ()
bound (Freed w) k = Free w >>= f =
Freed (fmap (`bound` k) w) Free (fmap (>>= f) w)
-- Also compare with (++)
(++) [] ys = ys
(++) (x:xs) ys = x : ((++) xs ys)
Which looks to be (and is!) a Monoid.
instance Functor f => Monoid (Freed f) where
mempty = returned
mappend = bound
And Monoids can be initially modeled by lists. We use the universal property of the list Monoid where if we have a function Monoid m => (a -> m) then we can turn a list [a] into an m.
convert :: Monoid m => (a -> m) -> [a] -> m
convert f = foldr mappend mempty . map f
convertFreed :: Functor f => [f ()] -> Freed f
convertFreed = convert go where
go :: Functor f => f () -> Freed f
go w = Freed (const Stop <$> w)
So in the case of your robot, we can get away with just using a list of actions
data Direction = Left | Right | Forward | Back
data ActionF a = Move Direction Double a
| Rotate Double a
deriving ( Functor )
-- and if we're using `ActionF ()` then we might as well do
data Action = Move Direction Double
| Rotate Double
robotMovementScript = [ Move Left 10
, Move Forward 25
, Rotate 180
]
Now when we cast it to IO we're clearly converting this list of directions into a Monad and we can see that as taking our initial Monoid and sending it to Freed and then treating Freed f as Free f () and interpreting that as an initial Monad over the IO actions we want.
But it's clear that if you're not making use of the "wrapped" values then you're not really making use of Monad structure. You might as well just have a list.
I'll try to give a partial answer for these parts:
Does it make sense to have a monad--such as RobotMonad--that never wraps a value? Or is this contrary to the basic concept of monads?
Are monoids a better fit for this kind of application? I can imagine concatenating robot control actions with <>. Though do notation seems more readable.
In the monad's definition, would/could there be something that ensures the type is always RobotMonad ()?
The core operation for monads is the monadic bind operation
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
This means that an action depends (or can depend) on the value of a previous action. So if you have a concept that inherently doesn't sometimes carry something that could be considered as a value (even in a complex form such as the continuation monad), monad isn't a good abstraction.
If we abandon >>= we're basically left with Applicative. It also allows us to compose actions, but their combinations can't depend on the values of preceding ones.
There is also an Applicative instance that carries no values, as you suggested: Data.Functor.Constant. Its actions of type a are required to be a monoid so that they can be composed together. This seems like the closest concept to your idea. And of course instead of Constant we could use a Monoid directly.
That said, perhaps simpler solution is to have a monad RobotMonad a that does carry a value (which would be essentially isomorphic to the Writer monad, as already mentioned). And declare runRobot to require RobotMonad (), so it'd be possible to execute only scripts with no value:
runRobot :: RobotMonad () -> RobotHandle -> IO ()
This would allow you to use the do notation and work with values inside the robot script. Even if the robot has no sensors, being able to pass values around can be often useful. And extending the concept would allow you to create a monad transformer such as RobotMonadT m a (resembling WriterT) with something like
runRobotT :: (Monad m) => RobotMonadT m () -> RobotHandle -> IO (m ())
or perhaps
runRobotT :: (MonadIO m) => RobotMonadT m () -> RobotHandle -> m ()
which would be a powerful abstraction that'd allow you to combine robotic actions with an arbitrary monad.
Well there is
data Useless a = Useless
instance Monad Useless where
return = const Useless
Useless >>= f = Useless
but as I indicated, that isn't usefull.
What you want is the Writer monad, which wraps up a monoid as a monad so you can use do notation.
Well it seems like you have a type that supports just
(>>) :: m a -> m b -> m b
But you further specify that you only want to be able to use m ()s. In this case I'd vote for
foo = mconcat
[ moveLeft 10
, moveForward 25
, rotate 180]
As the simple solution. The alternative is to do something like
type Robot = Writer [RobotAction]
inj :: RobotAction -> Robot ()
inj = tell . (:[])
runRobot :: Robot a -> [RobotAction]
runRobot = snd . runWriter
foo = runRobot $ do
inj $ moveLeft 10
inj $ moveForward 25
inj $ rotate 180
Using the Writer monad.
The problem with not wrapping the value is that
return a >>= f === f a
So suppose we had some monad that ignored the value, but contained other interesting information,
newtype Robot a = Robot {unRobot :: [RobotAction]}
addAction :: RobotAction -> Robot a -> Robot b
f a = Robot [a]
Now if we ignore the value,
instance Monad Robot where
return = const (Robot [])
a >>= f = a -- never run the function
Then
return a >>= f /= f a
so we don't have a monad. So if you want to the monad to have any interesting states, have == return false, then you need to store that value.

What is <*> called and what does it do? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Closed 5 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
How do these functions in the Applicative typeclass work?
(<*>) :: f (a -> b) -> f a -> f b
(*>) :: f a -> f b -> f b
(<*) :: f a -> f b -> f a
(That is, if they weren't operators, what might they be called?)
As a side note, if you could rename pure to something more friendly to non-mathematicians, what would you call it?
Sorry, I don't really know my math, so I'm curious how to pronounce the functions in the Applicative typeclass
Knowing your math, or not, is largely irrelevant here, I think. As you're probably aware, Haskell borrows a few bits of terminology from various fields of abstract math, most notably Category Theory, from whence we get functors and monads. The use of these terms in Haskell diverges somewhat from the formal mathematical definitions, but they're usually close enough to be good descriptive terms anyway.
The Applicative type class sits somewhere between Functor and Monad, so one would expect it to have a similar mathematical basis. The documentation for the Control.Applicative module begins with:
This module describes a structure intermediate between a functor and a monad: it provides pure expressions and sequencing, but no binding. (Technically, a strong lax monoidal functor.)
Hmm.
class (Functor f) => StrongLaxMonoidalFunctor f where
. . .
Not quite as catchy as Monad, I think.
What all this basically boils down to is that Applicative doesn't correspond to any concept that's particularly interesting mathematically, so there's no ready-made terms lying around that capture the way it's used in Haskell. So, set the math aside for now.
If we want to know what to call (<*>) it might help to know what it basically means.
So what's up with Applicative, anyway, and why do we call it that?
What Applicative amounts to in practice is a way to lift arbitrary functions into a Functor. Consider the combination of Maybe (arguably the simplest non-trivial Functor) and Bool (likewise the simplest non-trivial data type).
maybeNot :: Maybe Bool -> Maybe Bool
maybeNot = fmap not
The function fmap lets us lift not from working on Bool to working on Maybe Bool. But what if we want to lift (&&)?
maybeAnd' :: Maybe Bool -> Maybe (Bool -> Bool)
maybeAnd' = fmap (&&)
Well, that's not what we want at all! In fact, it's pretty much useless. We can try to be clever and sneak another Bool into Maybe through the back...
maybeAnd'' :: Maybe Bool -> Bool -> Maybe Bool
maybeAnd'' x y = fmap ($ y) (fmap (&&) x)
...but that's no good. For one thing, it's wrong. For another thing, it's ugly. We could keep trying, but it turns out that there's no way to lift a function of multiple arguments to work on an arbitrary Functor. Annoying!
On the other hand, we could do it easily if we used Maybe's Monad instance:
maybeAnd :: Maybe Bool -> Maybe Bool -> Maybe Bool
maybeAnd x y = do x' <- x
y' <- y
return (x' && y')
Now, that's a lot of hassle just to translate a simple function--which is why Control.Monad provides a function to do it automatically, liftM2. The 2 in its name refers to the fact that it works on functions of exactly two arguments; similar functions exist for 3, 4, and 5 argument functions. These functions are better, but not perfect, and specifying the number of arguments is ugly and clumsy.
Which brings us to the paper that introduced the Applicative type class. In it, the authors make essentially two observations:
Lifting multi-argument functions into a Functor is a very natural thing to do
Doing so doesn't require the full capabilities of a Monad
Normal function application is written by simple juxtaposition of terms, so to make "lifted application" as simple and natural as possible, the paper introduces infix operators to stand in for application, lifted into the Functor, and a type class to provide what's needed for that.
All of which brings us to the following point: (<*>) simply represents function application--so why pronounce it any differently than you do the whitespace "juxtaposition operator"?
But if that's not very satisfying, we can observe that the Control.Monad module also provides a function that does the same thing for monads:
ap :: (Monad m) => m (a -> b) -> m a -> m b
Where ap is, of course, short for "apply". Since any Monad can be Applicative, and ap needs only the subset of features present in the latter, we can perhaps say that if (<*>) weren't an operator, it should be called ap.
We can also approach things from the other direction. The Functor lifting operation is called fmap because it's a generalization of the map operation on lists. What sort of function on lists would work like (<*>)? There's what ap does on lists, of course, but that's not particularly useful on its own.
In fact, there's a perhaps more natural interpretation for lists. What comes to mind when you look at the following type signature?
listApply :: [a -> b] -> [a] -> [b]
There's something just so tempting about the idea of lining the lists up in parallel, applying each function in the first to the corresponding element of the second. Unfortunately for our old friend Monad, this simple operation violates the monad laws if the lists are of different lengths. But it makes a fine Applicative, in which case (<*>) becomes a way of stringing together a generalized version of zipWith, so perhaps we can imagine calling it fzipWith?
This zipping idea actually brings us full circle. Recall that math stuff earlier, about monoidal functors? As the name suggests, these are a way of combining the structure of monoids and functors, both of which are familiar Haskell type classes:
class Functor f where
fmap :: (a -> b) -> f a -> f b
class Monoid a where
mempty :: a
mappend :: a -> a -> a
What would these look like if you put them in a box together and shook it up a bit? From Functor we'll keep the idea of a structure independent of its type parameter, and from Monoid we'll keep the overall form of the functions:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ?
mfAppend :: f ? -> f ? -> f ?
We don't want to assume that there's a way to create an truly "empty" Functor, and we can't conjure up a value of an arbitrary type, so we'll fix the type of mfEmpty as f ().
We also don't want to force mfAppend to need a consistent type parameter, so now we have this:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ()
mfAppend :: f a -> f b -> f ?
What's the result type for mfAppend? We have two arbitrary types we know nothing about, so we don't have many options. The most sensible thing is to just keep both:
class (Functor f) => MonoidalFunctor f where
mfEmpty :: f ()
mfAppend :: f a -> f b -> f (a, b)
At which point mfAppend is now clearly a generalized version of zip on lists, and we can reconstruct Applicative easily:
mfPure x = fmap (\() -> x) mfEmpty
mfApply f x = fmap (\(f, x) -> f x) (mfAppend f x)
This also shows us that pure is related to the identity element of a Monoid, so other good names for it might be anything suggesting a unit value, a null operation, or such.
That was lengthy, so to summarize:
(<*>) is just a modified function application, so you can either read it as "ap" or "apply", or elide it entirely the way you would normal function application.
(<*>) also roughly generalizes zipWith on lists, so you can read it as "zip functors with", similarly to reading fmap as "map a functor with".
The first is closer to the intent of the Applicative type class--as the name suggests--so that's what I recommend.
In fact, I encourage liberal use, and non-pronunciation, of all lifted application operators:
(<$>), which lifts a single-argument function into a Functor
(<*>), which chains a multi-argument function through an Applicative
(=<<), which binds a function that enters a Monad onto an existing computation
All three are, at heart, just regular function application, spiced up a little bit.
Since I have no ambitions of improving on C. A. McCann's technical answer, I'll tackle the more fluffy one:
If you could rename pure to something more friendly to podunks like me, what would you call it?
As an alternative, especially since there is no end to the constant angst-and-betrayal-filled cried against the Monad version, called "return", I propose another name, which suggests its function in a way that can satisfy the most imperative of imperative programmers, and the most functional of...well, hopefully, everyone can complain the same about: inject.
Take a value. "Inject" it into the Functor, Applicative, Monad, or what-have-you. I vote for "inject", and I approved this message.
In brief:
<*> you can call it apply. So Maybe f <*> Maybe a can be pronounced as apply Maybe f over Maybe a.
You could rename pure to of, like many JavaScript libraries do. In JS you can create a Maybe with Maybe.of(a).
Also, Haskell's wiki has a page on pronunciation of language operators here
(<*>) -- Tie Fighter
(*>) -- Right Tie
(<*) -- Left Tie
pure -- also called "return"
Source: Haskell Programming from First Principles, by Chris Allen and Julie Moronuki

Resources