Can you automatically add Haskell import statements when extracting from Coq? - haskell

I'm doing an extraction from Coq to Haskell that requires importing a couple of modules on the Haskell end. Is there any Coq extraction feature that allows you to do this automatically? I know I could just write a script to do this but I'd prefer to not reinvent the wheel if necessary.

There isn't, and it's very sad.
We've solved this problem with a Python script that adds several imports (fiximports.py), but this requires using the Haskell preprocessor (you use it by passing -F -pgmF fiximports.py to ghc) and results in unused imports warnings, and isn't terribly elegant.
I think the issue is that these imports are unnecessary for OCaml extraction, and the feature hasn't been designed and implemented for Haskell extraction.

Related

Type hints for lxml?

New to Python and come from a statically typed language background. I want type hints for https://lxml.de just for ease of development (mypy flagging issues and suggesting methods would be nice!)
To my knowledge, this is a python 2.0 module and doesn’t have types. Currently I’ve used https://mypy.readthedocs.io/en/stable/stubgen.html to create stub type definitions and filling in “any”-types I’m using with more information, but it’s really hacky. Are there any safer ways to get type hints?
There is an official stubs package for lxml now called lxml-stubs:
$ pip install lxml-stubs
Note, however, that the stubs are still in development and are not 100% complete yet (although very much usable from my experience). These stubs were once part of typeshed, then curated by Jelle Zijlstra after removal and now are developed as part of the lxml project.
If you want the development version of the stubs, install via
$ pip install git+https://github.com/lxml/lxml-stubs.git
(the project's readme installation command is missing the git+ prefix in URL's scheme and won't work).
Recently I have done much more gap filling based on lxml-stubs with some good progress.
Welcome to check out types-lxml if any late comer are still interested. For most people I think lxml.objectify is the only missing piece lacking from the stubs, which is planned immediately after current release.
I’ve used stubgen to create stub type definitions and filling in “any”-types
This is actually the correct approach if it's not lxml; creating template from mypy stubgen is the starting point for many stub files. But lxml is mostly written in Cython, for which stubgen do not have perfect support yet. Besides as OP noted, this is a python 2.0 era module, and author uses function arguments in a quite polymorphous way. There are lots of unique challenges annotating lxml, as lxml is essentially a python interface for libxml and libxslt in its core.
As an example, the support of both unicode and bytes input complicates matter too; this is the same difficulty found when annotating xml.etree bundled with python, but in a much greater magnitude.
I would not call this "hacky", rather it is gradual typing.
You can take a closer look at lxml-stubs repository. From about:
This repository contains external type annotations (see PEP 484) for the lxml package. Such type annotations are normally included in typeshed, but lxml's annotations were frequently problematic and have therefore been deleted from typeshed. In particular, the stubs are incomplete and it has been difficult to provide complete stubs.
Perhaps it will be useful to you

How to get a list of functions defined in a Haskell source file (for semantic analysis)?

I've found https://github.com/github/semantic however this does not yet seem to support Haskell source code.
I highly suspect such a library exists, however it's quite difficult to get relevant results from a web search.
What library supports this, ideally something fairly simple?
I suppose the defacto parser for Haskell in Haskell is GHC itself, but I'd assume interfacing with this would be difficult.

Is it possible to "customize" python?

Can I change the core functionality of Python, for example, rewrite it to use say("Hello world") instead of print("Hello world")?
If this is possible, how can this be done?
I see a few possibilities as to how to accomplish this. I've arranged them in order of how much programming is needed/how obnoxious they are:
Renaming builtins
If, as in your example, you are simply more comfortable using say() or printf() than print(), then you can, as others have answered, just alias the builtin function to your own function with something like say=print.
Rewriting builtins
Let's pretend we don't trust the official implementation of print() and we want to implement our own. A lot of the internals in Python such as stdin are contained in the sys library. You could, if you wanted, implement your own. I asked a question a couple years ago here that discussed how to rename the _ variable to ans which might be illuminating to take a look at.
Sending your code through a preprocessor
Ok, so gcc doesn't require C code as input. If you use the right precompiler flags, then you could get away with evaluating #define macros in your source code before you send it to python. Technically a valid answer, but obnoxious as heck.
Writing modules in another language
Cython (python written in C) can have modules written for it in C. You could build a wrapper for printf in C (or assembly, if you'd rather) and use that library in your python code.
Recompiling Python
Unfortunately, doing the above is not possible with all tokens. What if, in a fit of fancy, we'd like to use whilst loops instead of while loops? The only way to accomplish this is actually altering the functioning of python itself. Now, this isn't for the faint of heart or the new programmer. Compilers are really complicated.
Since, however, Python is open source and you can download the source code here, in theory, you could go into the compiler and manually make all the edits you want, then compile your version of python and use that. By no means would your code be portable (as essentially you'd be making a fork of python) but you could technically do it.
Or just conform to the Python standards. That works too.
Writing a PEP
Python is a living language. It's constantly being updated. The ruling body of "What gets included" is the BDFL-delegate and the Council, but anyone can write a Python Enhancement Proposal that proposes to change the language in some way. Most features in Python started out as a PEP. See PEP 0001 for more details.
yes you can just write
say = print
say("hello")

Is there any tool for aiding with explicit import of modules in Haskell?

After considering the reasons here to always import modules explicitly (with the exception of Prelude), I am trying to abide by this norm. However, this may sometimes be cumbersome. Is there any tool which would analyze working code and give a complete list of explicit imports?
There is the -ddump-minimal-imports flag for ghc.
The results are placed in the file (module-name).imports.
The -fno-code ghc option is also helpful here (to avoid the code generation phase.)

What would be involved in calling ARPACK++ (a C++ library) from Haskell?

I've spent a couple of days developing a program in Haskell, while learning the language. Now I realize that I'll need to call Arpack (a Fortran library) or Arpack++ (a C++ wrapper to Arpack) -- I can't find a good implementation of Lanczos method with Haskell bindings. Do any more experienced Haskell programers have an opinion of how difficult this would be?
I've been able to get ".so" ("shared object") versions of libarpack and libarpack++ installed through Ubuntu's repository, but I'm not sure that will suffice. I suspect I'm going to ultimately need to build Arpack++ from source code, which is possible, but I'm getting a lot of build errors, so it will take time. Is there any way to use just the ".so" files, without knowing exactly which version of the header files were used to generate them?
I'm considering using GreenCard, because it looks like the most well maintained Haskell/C bridge. I can't find much documentation though, so I'm wondering whether it will support C++ too.
I'm also starting to wonder whether I should rewrite my program in Python, and use scipy to call Arpack, but I've already sunk a couple of days into writing Haskell. I really like Haskell too, so I'm hoping I can make this work. I guess my overall question is this: What would be involved in making this work with Haskell?
Thanks much.
ELF format is standard format of executables and shared libraries, so accessing the code in these compiled modules is only a matter of knowing function names. If I understand correctly, Fortran is interoperable with C. As a consequence, Fortran should be interoperable with any language which can use C bindings, including Haskell. FYI, you can find all names exported by a module (executable or shared object or simple object archive) using nm tool (it is usually available in all linux distros by default). This of course would work if the binary file was not "stripped", but AFAIK it is not common practice.
However, Haskell cannot use C++ bindings in sane way, since C++ polymorphic features require name mangling, and the method of this name transformation is highly compiler-dependent. It is well-known problem which is not specific to Haskell. Of course, you could try to get a list of exported symbols from C++ shared object and then bind them using FFI, but... It isn't worth it.
As dsign said, you can use Foreign Function Interface GHC feature to create bindings to foreign code. All you would require is library headers (and the library itself of course). In case of C language that would be header files (*.h), but since your library is written in Fortran, you have to find header files analogue in library sources, refere to this page to match Fortran and C types, and then use this information to write FFI bindings. It would be helpful first to write C bindings, i.e. write C header. Then you can even use automatic FFI binding programs like c2hs.
It maybe also helpful to look through C++ bindings. It is possible that it has the header file I've described above. If it has one, then writing FFI bindings will be no more difficult than writing them for any other library.
So, it is not entirely impossible, but it may require some thorough work. Writing bindings to scientific/pure computational libraries is way easier than writing them for some system library which does a lot of IO and keeps its own internal state, but since this library is written not in C... Well, it may be advisable to invest your time in easier alternatives. I cannot say anythin about scipy, I've never used it, but since Python as a language is much more simpler than Haskell, it may be good alternative.
I can tell you that using a C/Fortran library from Haskell, with the help of the Foreign Function Interface would be certainly possible and not terribly complicated. Here is an introduction. In my understanding, you should be able to call anything with a C calling convention, and perhaps even Fortran, without need of recompiling the code. The only exception is with things that look like function calls but are indeed macros, in which case you will have to figure out what the macros do and reproduce them in Haskell.
As of greencard, I have never used it, so I can not vouch for it.
Your second idea of using Python could potentially save you more than a couple of days. Sad as it is, I have never managed Haskell code to easily adapt to my changing requirements, while I find that trivial in Python. Of course, that could be a limitation on my skills with Haskell or my thinking process rather that something to blame to the language.

Resources