How to clear MemSQL data cache without restart cluster? - singlestore

The purpose for this question is we need to benchmark MemSQL performance in various workloads with different query and/or memsql optimization settings. So we need to avoid the impact from data caching from MemSQL.
The closest thing for this purpose I find out so far is drop all from plancache. But this from its words sounds like it only clear the compiled execution plans from MemSQL, not data cache itself. The MySQL cache clearing commands do not work on MemSQL.
Any idea?

What sorts of data caching are you interested in clearing?
To help me understand what types of cache clearing you are interested in, which MySQL cache clearing commands were you trying to use?
MemSQL doesn't do much caching of data. The main one is caching columnstore data in memory. If you want to test the performance of queries against cold data on disk, you can flush the disk cache with:
echo 3 | sudo tee /proc/sys/vm/drop_caches

Related

How do I force a memtable flush for every write?

I would like to flush the memtable to disk after every update/write operation (or in any case, as frequently as possible). My sole purpose is to stress test the underlying disk using a production-level database software.
It seems like memtable_cleanup_threshold is the way to go, but it's deprecated, is there another way to accomplish this? How about memtable_heap_space_in_mb and memtable_offheap_space_in_mb? I'm no Java Programmer, which one should I tune without compromising the rest of the functionalities?
You can definitely try setting both memtable_heap_space_in_mb and memtable_offheap_space_in_mb to a really low value.
Additionally, you can also configure commitlog_total_space_in_mb. If the occupied space goes above this property, it will cause more frequent flushes.
But since your goal is to stress-test the disk, my suggestion is to do the following:
Configure both data_file_directories and commitlog_directory to be mounted on the same disk.
Use NoSQLBench to stress test with heavy writes.
This way, you don't have to muck around with the memtable settings. Have a look at the NoSQLBench Beginner's Guide blog post for details. Cheers!
You also could just trigger a flush on the table by issuing nodetool flush or run the according JMX op after each write. However, Cassandra stores data distributed over many nodes and a flush is always a node bound operation. To find out which nodes you need to flush you would need to query the list of endpoints the written data is stored on (also available via JMX or with nodetool), otherwise you would need to flush all nodes.
While this is fine for testing purposes I would not recommend that for production.

Cassandra vs Cassandra+Ignite

(Single Node Cluster)I've got a table having 2 columns, one is of 'text' type and the other is a 'blob'. I'm using Datastax's C++ driver to perform read/write requests in Cassandra.
The blob is storing a C++ structure.(Size: 7 KB).
Since I was getting lesser than desirable throughput when using Cassandra alone, I tried adding Ignite on top of Cassandra, in the hope that there will be significant improvement in the performance as now the data will be read from RAM instead of hard disks.
However, it turned out that after adding Ignite, the performance dropped even more(roughly around 50%!).
Read Throughput when using only Cassandra: 21000 rows/second.
Read Throughput with Cassandra + Ignite: 9000 rows/second.
Since, I am storing a C++ structure in Cassandra's Blob, the Ignite API uses serialization/de-serialization while writing/reading the data. Is this the reason, for the drop in the performance(consider the size of the structure i.e. 7K) or is this drop not at all expected and maybe something's wrong in the configuration?
Cassandra: 3.11.2
RHEL: 6.5
Configurations for Ignite are same as given here.
I got significant improvement in Ignite+Cassandra throughput when I used serialization in raw mode. Now the throughput has increased from 9000 rows/second to 23000 rows/second. But still, it's not significantly superior to Cassandra. I'm still hopeful to find some more tweaks which will improve this further.
I've added some more details about the configurations and client code on github.
Looks like you do one get per each key in this benchmark for Ignite and you didn't invoke loadCache before it. In this case, on each get, Ignite will go to Cassandra to get value from it and only after it will store it in the cache. So, I'd recommend invoking loadCache before benchmarking, or, at least, test gets on the same keys, to give an opportunity to Ignite to store keys in the cache. If you think you already have all the data in caches, please share code where you write data to Ignite too.
Also, you invoke "grid.GetCache" in each thread - it won't take a lot of time, but you definitely should avoid such things inside benchmark, when you already measure time.

Cassandra as distributed cached data store

Can we use Cassandra as a distributed in-memory cache database by utilizing its file level caching, key cache, and row cache?
I don't want to overload each node and I want to add more nodes to the cluster when the data grows to make this effective (to let most of my data be cached). Especially since 40% of my column families are static, and updates/insertions to other tables are not much.
The primary aim of ours is that we need an elastic realtime data store (faster around as in memory dB)
Cassandra was not born for the goal but after many optimizations it has become also a tool for in-memory caching. There are a few experiments -- the most significant I know is the one reported by Netflix. In Netflix they replaced their EVCache system (whom was persisted by a Cassandra backend) with a new SSD cassandra-based cache architecture -- the results are very impressive in term of performance improvements and cost-reduction.
Before choosing Cassandra as a replacement for any cache system I'd recommend to deeply understand the usage of row-caching and key-caching. More, I've never used Datastax Enterprise but it has an interesting in memory table feature.
HTH,
Carlo
I guess you could but I don't think that's correct use-case for Cassandra. Without knowing more about your requirements, I'd recommend you have a look at products like e.g. Hazelcast which is an in-memory distributed cache and sounds more like a fit for your use-case.
I know its a little late but I've just come accross this post doing some research on Cassandra.
I've seen success with Tibco's AST (recently rebranded to DTM) for in memory caching.
I've also played around with Pivotal's gemfire (this uses Geode under the covers), which has shown some promise.

fake fsync calls to improve performance [duplicate]

I am switching to PostgreSQL from SQLite for a typical Rails application.
The problem is that running specs became slow with PG.
On SQLite it took ~34 seconds, on PG it's ~76 seconds which is more than 2x slower.
So now I want to apply some techniques to bring the performance of the specs on par with SQLite with no code modifications (ideally just by setting the connection options, which is probably not possible).
Couple of obvious things from top of my head are:
RAM Disk (good setup with RSpec on OSX would be good to see)
Unlogged tables (can it be applied on the whole database so I don't have change all the scripts?)
As you may have understood I don't care about reliability and the rest (the DB is just a throwaway thingy here).
I need to get the most out of the PG and make it as fast as it can possibly be.
Best answer would ideally describe the tricks for doing just that, setup and the drawbacks of those tricks.
UPDATE: fsync = off + full_page_writes = off only decreased time to ~65 seconds (~-16 secs). Good start, but far from the target of 34.
UPDATE 2: I tried to use RAM disk but the performance gain was within an error margin. So doesn't seem to be worth it.
UPDATE 3:*
I found the biggest bottleneck and now my specs run as fast as the SQLite ones.
The issue was the database cleanup that did the truncation. Apparently SQLite is way too fast there.
To "fix" it I open a transaction before each test and roll it back at the end.
Some numbers for ~700 tests.
Truncation: SQLite - 34s, PG - 76s.
Transaction: SQLite - 17s, PG - 18s.
2x speed increase for SQLite.
4x speed increase for PG.
First, always use the latest version of PostgreSQL. Performance improvements are always coming, so you're probably wasting your time if you're tuning an old version. For example, PostgreSQL 9.2 significantly improves the speed of TRUNCATE and of course adds index-only scans. Even minor releases should always be followed; see the version policy.
Don'ts
Do NOT put a tablespace on a RAMdisk or other non-durable storage.
If you lose a tablespace the whole database may be damaged and hard to use without significant work. There's very little advantage to this compared to just using UNLOGGED tables and having lots of RAM for cache anyway.
If you truly want a ramdisk based system, initdb a whole new cluster on the ramdisk by initdbing a new PostgreSQL instance on the ramdisk, so you have a completely disposable PostgreSQL instance.
PostgreSQL server configuration
When testing, you can configure your server for non-durable but faster operation.
This is one of the only acceptable uses for the fsync=off setting in PostgreSQL. This setting pretty much tells PostgreSQL not to bother with ordered writes or any of that other nasty data-integrity-protection and crash-safety stuff, giving it permission to totally trash your data if you lose power or have an OS crash.
Needless to say, you should never enable fsync=off in production unless you're using Pg as a temporary database for data you can re-generate from elsewhere. If and only if you're doing to turn fsync off can also turn full_page_writes off, as it no longer does any good then. Beware that fsync=off and full_page_writes apply at the cluster level, so they affect all databases in your PostgreSQL instance.
For production use you can possibly use synchronous_commit=off and set a commit_delay, as you'll get many of the same benefits as fsync=off without the giant data corruption risk. You do have a small window of loss of recent data if you enable async commit - but that's it.
If you have the option of slightly altering the DDL, you can also use UNLOGGED tables in Pg 9.1+ to completely avoid WAL logging and gain a real speed boost at the cost of the tables getting erased if the server crashes. There is no configuration option to make all tables unlogged, it must be set during CREATE TABLE. In addition to being good for testing this is handy if you have tables full of generated or unimportant data in a database that otherwise contains stuff you need to be safe.
Check your logs and see if you're getting warnings about too many checkpoints. If you are, you should increase your checkpoint_segments. You may also want to tune your checkpoint_completion_target to smooth writes out.
Tune shared_buffers to fit your workload. This is OS-dependent, depends on what else is going on with your machine, and requires some trial and error. The defaults are extremely conservative. You may need to increase the OS's maximum shared memory limit if you increase shared_buffers on PostgreSQL 9.2 and below; 9.3 and above changed how they use shared memory to avoid that.
If you're using a just a couple of connections that do lots of work, increase work_mem to give them more RAM to play with for sorts etc. Beware that too high a work_mem setting can cause out-of-memory problems because it's per-sort not per-connection so one query can have many nested sorts. You only really have to increase work_mem if you can see sorts spilling to disk in EXPLAIN or logged with the log_temp_files setting (recommended), but a higher value may also let Pg pick smarter plans.
As said by another poster here it's wise to put the xlog and the main tables/indexes on separate HDDs if possible. Separate partitions is pretty pointless, you really want separate drives. This separation has much less benefit if you're running with fsync=off and almost none if you're using UNLOGGED tables.
Finally, tune your queries. Make sure that your random_page_cost and seq_page_cost reflect your system's performance, ensure your effective_cache_size is correct, etc. Use EXPLAIN (BUFFERS, ANALYZE) to examine individual query plans, and turn the auto_explain module on to report all slow queries. You can often improve query performance dramatically just by creating an appropriate index or tweaking the cost parameters.
AFAIK there's no way to set an entire database or cluster as UNLOGGED. It'd be interesting to be able to do so. Consider asking on the PostgreSQL mailing list.
Host OS tuning
There's some tuning you can do at the operating system level, too. The main thing you might want to do is convince the operating system not to flush writes to disk aggressively, since you really don't care when/if they make it to disk.
In Linux you can control this with the virtual memory subsystem's dirty_* settings, like dirty_writeback_centisecs.
The only issue with tuning writeback settings to be too slack is that a flush by some other program may cause all PostgreSQL's accumulated buffers to be flushed too, causing big stalls while everything blocks on writes. You may be able to alleviate this by running PostgreSQL on a different file system, but some flushes may be device-level or whole-host-level not filesystem-level, so you can't rely on that.
This tuning really requires playing around with the settings to see what works best for your workload.
On newer kernels, you may wish to ensure that vm.zone_reclaim_mode is set to zero, as it can cause severe performance issues with NUMA systems (most systems these days) due to interactions with how PostgreSQL manages shared_buffers.
Query and workload tuning
These are things that DO require code changes; they may not suit you. Some are things you might be able to apply.
If you're not batching work into larger transactions, start. Lots of small transactions are expensive, so you should batch stuff whenever it's possible and practical to do so. If you're using async commit this is less important, but still highly recommended.
Whenever possible use temporary tables. They don't generate WAL traffic, so they're lots faster for inserts and updates. Sometimes it's worth slurping a bunch of data into a temp table, manipulating it however you need to, then doing an INSERT INTO ... SELECT ... to copy it to the final table. Note that temporary tables are per-session; if your session ends or you lose your connection then the temp table goes away, and no other connection can see the contents of a session's temp table(s).
If you're using PostgreSQL 9.1 or newer you can use UNLOGGED tables for data you can afford to lose, like session state. These are visible across different sessions and preserved between connections. They get truncated if the server shuts down uncleanly so they can't be used for anything you can't re-create, but they're great for caches, materialized views, state tables, etc.
In general, don't DELETE FROM blah;. Use TRUNCATE TABLE blah; instead; it's a lot quicker when you're dumping all rows in a table. Truncate many tables in one TRUNCATE call if you can. There's a caveat if you're doing lots of TRUNCATES of small tables over and over again, though; see: Postgresql Truncation speed
If you don't have indexes on foreign keys, DELETEs involving the primary keys referenced by those foreign keys will be horribly slow. Make sure to create such indexes if you ever expect to DELETE from the referenced table(s). Indexes are not required for TRUNCATE.
Don't create indexes you don't need. Each index has a maintenance cost. Try to use a minimal set of indexes and let bitmap index scans combine them rather than maintaining too many huge, expensive multi-column indexes. Where indexes are required, try to populate the table first, then create indexes at the end.
Hardware
Having enough RAM to hold the entire database is a huge win if you can manage it.
If you don't have enough RAM, the faster storage you can get the better. Even a cheap SSD makes a massive difference over spinning rust. Don't trust cheap SSDs for production though, they're often not crashsafe and might eat your data.
Learning
Greg Smith's book, PostgreSQL 9.0 High Performance remains relevant despite referring to a somewhat older version. It should be a useful reference.
Join the PostgreSQL general mailing list and follow it.
Reading:
Tuning your PostgreSQL server - PostgreSQL wiki
Number of database connections - PostgreSQL wiki
Use different disk layout:
different disk for $PGDATA
different disk for $PGDATA/pg_xlog
different disk for tem files (per database $PGDATA/base//pgsql_tmp) (see note about work_mem)
postgresql.conf tweaks:
shared_memory: 30% of available RAM but not more than 6 to 8GB. It seems to be better to have less shared memory (2GB - 4GB) for write intensive workloads
work_mem: mostly for select queries with sorts/aggregations. This is per connection setting and query can allocate that value multiple times. If data can't fit then disk is used (pgsql_tmp). Check "explain analyze" to see how much memory do you need
fsync and synchronous_commit: Default values are safe but If you can tolerate data lost then you can turn then off
random_page_cost: if you have SSD or fast RAID array you can lower this to 2.0 (RAID) or even lower (1.1) for SSD
checkpoint_segments: you can go higher 32 or 64 and change checkpoint_completion_target to 0.9. Lower value allows faster after-crash recovery

Cassandra in-memory configuration

We currently evaluate the use of Apache Cassandra 1.2 as a large scale data processing solution. As our application is read-intensive and to provide users with the fastest possible response time we would like to configure Apache Cassandra to keep all data in-memory.
Is it enough to set the storage option caching to rows_only on all column families and giving each Cassandra node sufficient memory to hold its data portion? Or are there other possibilities for Cassandra ?
Read performance tuning is much complex than write. Base on my experiences, there are some factors you can take into consideration. Some point of view are not memory related, but they also help improve the read performance.
1.Row Cache: avoid disk hit, but enable it only if the rows are not updated frequently. You could also enable the off-heap row cache to reduce the JVM heap usage.
2.Key Cache: enable by default, no need to disable it. It avoid disk searching when row cache is not hit.
3.Reduce the frequency of memtable flush: adjust memtable_total_space_in_mb, commitlog_total_space_in_mb, flush_largest_memtables_at
4.Using LeveledCompactionStrategy: avoid a row spread across multiple SSTables.
DataStax has added an in-memory computing feature in the latest version of its Apache Cassandra-based NoSQL database, as part of a drive to increase the performance of online applications.
Reference :
http://www.datastax.com/2014/02/welcome-to-datastax-enterprise-4-0-and-opscenter-4-1

Resources