I want to apply splitUtlisation on each row of utilisationDataFarme and pass startTime and endTime as parameters., as a result splitUtlisation will return multiple rows of data hence I want to create a new DataFrame with (Id, Day, Hour, Minute)
def splitUtlisation(onDateTime, offDateTime):
yield onDateTime
rule = rrule.rrule(rrule.HOURLY, byminute = 0, bysecond = 0, dtstart=offDateTime)
for result in rule.between(onDateTime, offDateTime):
yield result
yield offDateTime
utilisationDataFarme = (
sc.parallelize([
(10001, "2017-02-12 12:01:40" , "2017-02-12 12:56:32"),
(10001, "2017-02-13 12:06:32" , "2017-02-15 16:06:32"),
(10001, "2017-02-16 21:45:56" , "2017-02-21 21:45:56"),
(10001, "2017-02-21 22:32:41" , "2017-02-25 00:52:50"),
]).toDF(["id", "startTime" , "endTime"])
.withColumn("startTime", col("startTime").cast("timestamp"))
.withColumn("endTime", col("endTime").cast("timestamp"))
In core Python I did like this
dayList = ['SUN' , 'MON' , 'TUE' , 'WED' , 'THR' , 'FRI' , 'SAT']
for result in hours_aligned(datetime.datetime.now(), datetime.datetime.now() + timedelta(hours=68)):
print(dayList[datetime.datetime.weekday(result)], result.hour, 60 if result.minute == 0 else result.minute)
Result
THR 21 60
THR 22 60
THR 23 60
FRI 0 60
FRI 1 60
FRI 2 60
FRI 3 60
How to create it in pySpark?
I tried to create new Schema and apply
schema = StructType([StructField("Id", StringType(), False), StructField("Day", StringType(), False), StructField("Hour", StringType(), False) , StructField("Minute", StringType(), False)])
udf_splitUtlisation = udf(splitUtlisation, schema)
df = sqlContext.createDataFrame([],"id" , "Day" , "Hour" , "Minute")
Still I could not handle multiple rows as response.
You can use pyspark's explode to unpack a single row containing multiple values into multiple rows once you have your udf defined correctly.
As far as I know you won't be able to use generators with yield as an udf. Instead, you need to return all values at once as an array (see return_type) which then can be exploded and expanded:
import pandas as pd
from pyspark.sql.functions import col, udf, explode
from pyspark.sql.types import ArrayType, StringType, MapType
# input data as given by OP
df = (
sc.parallelize(
[
(10001, "2017-02-12 12:01:40", "2017-02-12 12:56:32"),
(10001, "2017-02-13 12:06:32", "2017-02-15 16:06:32"),
(10001, "2017-02-16 21:45:56", "2017-02-21 21:45:56"),
(10001, "2017-02-21 22:32:41", "2017-02-25 00:52:50"),
]
)
.toDF(["id", "startTime", "endTime"])
.withColumn("startTime", col("startTime").cast("timestamp"))
.withColumn("endTime", col("endTime").cast("timestamp"))
)
return_type = ArrayType(MapType(StringType(), StringType()))
#udf(returnType=return_type)
def your_udf_func(start, end):
"""Insert your function to return whatever you like
as a list of dictionaries.
For example, I chose to return hourly values for
day, hour and minute.
"""
date_range = pd.date_range(start, end, freq="h")
df = pd.DataFrame(
{
"day": date_range.strftime("%a"),
"hour": date_range.hour,
"minute": date_range.minute,
}
)
values = df.to_dict("index").values()
return list(values)
extracted = your_udf_func("startTime", "endTime")
exploded = explode(extracted).alias("exploded")
expanded = [
col("exploded").getItem(k).alias(k) for k in ["hour", "day", "minute"]
]
result = df.select("id", exploded).select("id", *expanded)
And the result is:
result.show(5)
+-----+----+---+------+
| id|hour|day|minute|
+-----+----+---+------+
|10001| 12|Sun| 1|
|10001| 12|Mon| 6|
|10001| 13|Mon| 6|
|10001| 14|Mon| 6|
|10001| 15|Mon| 6|
+-----+----+---+------+
only showing top 5 rows
Related
I am trying to use a customized accumulator within Palantir Foundry to aggregate Data within
a user defined function which is applied to each row of a dataframe within a statement df.withColumn(...).
From the resulting dataframe, I see, that the incrementation of the accumulator-value happens as expected. However, the value of the accumulator variable itself in the script does not change during the execution.
I see, that the Python-ID of the accumulator variable in the script differs from the Python-ID of the accumulator within the user defined function. But that might be expected...
How do I access the accumulator value which incrementation can be watched in the resulting dataframe-colun from within the calling script after the execution, as this is the information I am looking for?
from transforms.api import transform_df, Input, Output
import numpy as np
from pyspark.accumulators import AccumulatorParam
from pyspark.sql.functions import udf, struct
global accum
#transform_df(
Output("ri.foundry.main.dataset.xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"),
)
def compute(ctx):
from pyspark.sql.types import StructType, StringType, IntegerType, StructField
data2 = [("James","","Smith","36636","M",3000),
("Michael","Rose","","40288","M",4000),
("Robert","","Williams","42114","M",4000),
("Maria","Anne","Jones","39192","F",4000),
("Jen","Mary","Brown","","F",-1)
]
schema = StructType([ \
StructField("firstname",StringType(),True), \
StructField("middlename",StringType(),True), \
StructField("lastname",StringType(),True), \
StructField("id", StringType(), True), \
StructField("gender", StringType(), True), \
StructField("salary", IntegerType(), True) \
])
df = ctx.spark_session.createDataFrame(data=data2, schema=schema)
####################################
class AccumulatorNumpyArray(AccumulatorParam):
def zero(self, zero: np.ndarray):
return zero
def addInPlace(self, v1, v2):
return v1 + v2
# from pyspark.context import SparkContext
# sc = SparkContext.getOrCreate()
sc = ctx.spark_session.sparkContext
shape = 3
global accum
accum = sc.accumulator(
np.zeros(shape, dtype=np.int64),
AccumulatorNumpyArray(),
)
def func(row):
global accum
accum += np.ones(shape)
return str(accum) + '_' + str(id(accum))
user_defined_function = udf(func, StringType())
new = df.withColumn("processed", user_defined_function(struct([df[col] for col in df.columns])))
new.show(2)
print(accum)
return df
results in
+---------+----------+--------+-----+------+------+--------------------+
|firstname|middlename|lastname| id|gender|salary| processed|
+---------+----------+--------+-----+------+------+--------------------+
| James| | Smith|36636| M| 3000|[1. 1. 1.]_140388...|
| Michael| Rose| |40288| M| 4000|[2. 2. 2.]_140388...|
+---------+----------+--------+-----+------+------+--------------------+
only showing top 2 rows
and
> accum
Accumulator<id=0, value=[0 0 0]>
> id(accum)
140574405092256
If the Foundry-Boiler-Plate is removed, resulting in
import numpy as np
from pyspark.accumulators import AccumulatorParam
from pyspark.sql.functions import udf, struct
from pyspark.sql.types import StructType, StringType, IntegerType, StructField
from pyspark.sql import SparkSession
from pyspark.context import SparkContext
spark = (
SparkSession.builder.appName("Python Spark SQL basic example")
.config("spark.some.config.option", "some-value")
.getOrCreate()
)
# ctx = spark.sparkContext.getOrCreate()
data2 = [
("James", "", "Smith", "36636", "M", 3000),
("Michael", "Rose", "", "40288", "M", 4000),
("Robert", "", "Williams", "42114", "M", 4000),
("Maria", "Anne", "Jones", "39192", "F", 4000),
("Jen", "Mary", "Brown", "", "F", -1),
]
schema = StructType(
[
StructField("firstname", StringType(), True),
StructField("middlename", StringType(), True),
StructField("lastname", StringType(), True),
StructField("id", StringType(), True),
StructField("gender", StringType(), True),
StructField("salary", IntegerType(), True),
]
)
# df = ctx.spark_session.createDataFrame(data=data2, schema=schema)
df = spark.createDataFrame(data=data2, schema=schema)
####################################
class AccumulatorNumpyArray(AccumulatorParam):
def zero(self, zero: np.ndarray):
return zero
def addInPlace(self, v1, v2):
return v1 + v2
sc = SparkContext.getOrCreate()
shape = 3
global accum
accum = sc.accumulator(
np.zeros(shape, dtype=np.int64),
AccumulatorNumpyArray(),
)
def func(row):
global accum
accum += np.ones(shape)
return str(accum) + "_" + str(id(accum))
user_defined_function = udf(func, StringType())
new = df.withColumn(
"processed", user_defined_function(struct([df[col] for col in df.columns]))
)
new.show(2, False)
print(id(accum))
print(accum)
the output obtained within a regular Python environment with pyspark version 3.3.1 on Ubuntu meets the expectations and is
+---------+----------+--------+-----+------+------+--------------------------+
|firstname|middlename|lastname|id |gender|salary|processed |
+---------+----------+--------+-----+------+------+--------------------------+
|James | |Smith |36636|M |3000 |[1. 1. 1.]_139642682452576|
|Michael |Rose | |40288|M |4000 |[1. 1. 1.]_139642682450224|
+---------+----------+--------+-----+------+------+--------------------------+
only showing top 2 rows
140166944013424
[3. 3. 3.]
The code that runs outside of the transform is ran in a different environment than the code within your transform. When you commit, you'll be running your checks which runs the code outside the transform to generate the jobspec which is technically your executable transform. You can find these within the "details" of your dataset after the checks pass.
The logic within your transform is then detached and runs in isolation each time you hit build. The global accum you define outside the transform is never ran and doesn't exist when the code inside the compute is running.
global accum <-- runs in checks
#transform_df(
Output("ri.foundry.main.dataset.c0d4fc0c-bb1d-4c7b-86ce-a13ec6666490"),
)
def compute(ctx):
bla bla some logic <-- runs during build
The prints you are doing during your second code example, happen after the df is processed, because you are asking spark to compute with the new.show(2, false). While the print you are doing in the first example happen before the df is processed, since the compute will only happen after your return df.
If you want to try to print after your df is computed, you can use #transform(... instead of #transform_df(... and do a print after writing the dataframe contents. Should be something like this:
#transform(
output=Output("ri.foundry.main.dataset.c0d4fc0c-bb1d-4c7b-86ce-a13ec6666490"),
)
def compute(ctx, output):
df = ... some logic ...
output.write_dataframe(df) # please check the function name I think it was write_dataframe, but may be wrong
print accum
This is my initial dataframe:
columns = ["CounterpartID","Year","Month","Day","churnprobability", "deadprobability"]
data = [(1234, 2021,5,12, 0.85,0.6),(1224, 2022,6,12, 0.75,0.6),(1345, 2022,5,13, 0.8,0.2),(234, 2021,7,12, 0.9,0.8)]
from pyspark.sql.types import StructType, StructField, IntegerType, DoubleType
schema = StructType([
StructField("client_id", IntegerType(), False),
StructField("year", IntegerType(), False),
StructField("month", IntegerType(), False),
StructField("day", IntegerType(), False),
StructField("churn_probability", DoubleType(), False),
StructField("dead_probability", DoubleType(), False)
])
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.show(truncate=False)
Then I do some transformations on the columns (basically, separating out the float columns into before decimals and after decimals columns) to get the intermediary dataframe.
abc = df.rdd.map(lambda x: (x[0],x[1],x[2],x[3],int(x[4]),int(x[4]%1 * pow(10,9)), int(x[5]),int(x[5]%1 * pow(10,9)) )).toDF(['client_id','year', 'month', 'day', 'churn_probability_unit', 'churn_probability_nano', 'dead_probability_unit', 'dead_probability_nano'] )
display(abc)
Below is the final desired dataframe (this is just an example of one row, but of course I'll need all the rows from the intermediary dataframe.
sjson = {"clientId": {"id": 1234 },"eventDate": {"year": 2022,"month": 8,"day": 5},"churnProbability": {"rate": {"units": "500","nanos": 780000000}},"deadProbability": {"rate": {"units": "500","nanos": 780000000}}}
df = spark.read.json(sc.parallelize([sjson])).select("clientId", "eventDate", "churnProbability", "deadProbability")
display(df)
How do I reach this end state from the intermediary state efficiently for all rows?
End goal is to use this final dataframe to write to Kafka where the schema of the topic is a form of the final desired dataframe.
I would probably eliminate the use of rdd logic (and again toDF) by using just one select from your original df:
from pyspark.sql import functions as F
defg = df.select(
F.struct(F.col('client_id').alias('id')).alias('clientId'),
F.struct('year', 'month', 'day').alias('eventDate'),
F.struct(
F.struct(
F.floor('churn_probability').alias('unit'),
(F.col('churn_probability') % 1 * 10**9).cast('long').alias('nanos')
).alias('rate')
).alias('churnProbability'),
F.struct(
F.struct(
F.floor('dead_probability').alias('unit'),
(F.col('dead_probability') % 1 * 10**9).cast('long').alias('nanos')
).alias('rate')
).alias('deadProbability'),
)
defg.show()
# +--------+-------------+----------------+----------------+
# |clientId| eventDate|churnProbability| deadProbability|
# +--------+-------------+----------------+----------------+
# | {1234}|{2021, 5, 12}|{{0, 850000000}}|{{0, 600000000}}|
# | {1224}|{2022, 6, 12}|{{0, 750000000}}|{{0, 600000000}}|
# | {1345}|{2022, 5, 13}|{{0, 800000000}}|{{0, 200000000}}|
# | {234}|{2021, 7, 12}|{{0, 900000000}}|{{0, 800000000}}|
# +--------+-------------+----------------+----------------+
So, I was able to solve this using structs , without using to_json
import pyspark.sql.functions as f
defg = abc.withColumn(
"clientId",
f.struct(
f.col("client_id").
alias("id")
)).withColumn(
"eventDate",
f.struct(
f.col("year").alias("year"),
f.col("month").alias("month"),
f.col("day").alias("day"),
)
).withColumn(
"churnProbability",
f.struct( f.struct(
f.col("churn_probability_unit").alias("unit"),
f.col("churn_probability_nano").alias("nanos")
).alias("rate")
)
).withColumn(
"deadProbability",
f.struct( f.struct(
f.col("dead_probability_unit").alias("unit"),
f.col("dead_probability_nano").alias("nanos")
).alias("rate")
)
).select ("clientId","eventDate","churnProbability", "deadProbability" )
I am new to pyspark and I want to explode array values in such a way that each value gets assigned to a new column. I tried using explode but I couldn't get the desired output. Below is my output
this is the code
from pyspark.sql import *
from pyspark.sql.functions import explode
if __name__ == "__main__":
spark = SparkSession.builder \
.master("local[3]") \
.appName("DataOps") \
.getOrCreate()
dataFrameJSON = spark.read \
.option("multiLine", True) \
.option("mode", "PERMISSIVE") \
.json("data.json")
dataFrameJSON.printSchema()
sub_DF = dataFrameJSON.select(explode("values.line").alias("new_values"))
sub_DF.printSchema()
sub_DF2 = sub_DF.select("new_values.*")
sub_DF2.printSchema()
sub_DF.show(truncate=False)
new_DF = sub_DF2.select("id", "period.*", "property")
new_DF.show(truncate=False)
new_DF.printSchema()
this is data:
{
"values" : {
"line" : [
{
"id" : 1,
"period" : {
"start_ts" : "2020-01-01T00:00:00",
"end_ts" : "2020-01-01T00:15:00"
},
"property" : [
{
"name" : "PID",
"val" : "P120E12345678"
},
{
"name" : "EngID",
"val" : "PANELID00000000"
},
{
"name" : "TownIstat",
"val" : "12058091"
},
{
"name" : "ActiveEng",
"val" : "5678.1"
}
]
}
}
Could you include the data instead of screenshots ?
Meanwhile, assuming that df is the dataframe being used, what we need to do, is to create a new dataframe, while exrtracting the vals from the previous property array to new columns, and droping the property column at last :
from pyspark.sql.functions import col
output_df = df.withColumn("PID", col("property")[0].val).withColumn("EngID", col("property")[1].val).withColumn("TownIstat", col("property")[2].val).withColumn("ActiveEng", col("property")[3].val).drop("property")
In case the elementwas of type ArrayType use the following :
from pyspark.sql.functions import col
output_df = df.withColumn("PID", col("property")[0][1]).withColumn("EngID", col("property")[1][1]).withColumn("TownIstat", col("property")[2][1]).withColumn("ActiveEng", col("property")[3][1]).drop("property")
Explode will explode the arrays into new Rows, not columns, see this : pyspark explode
This is a general solution and works even when the JSONs are messy (different ordering of elements or if some of the elements are missing)
You got to flatten first, regexp_replace to split the 'property' column and finally pivot. This also avoids hard coding of the new column names.
Constructing your dataframe:
from pyspark.sql.types import *
from pyspark.sql import functions as F
from pyspark.sql.functions import col
from pyspark.sql.functions import *
schema = StructType([StructField("id", IntegerType()), StructField("start_ts", StringType()), StructField("end_ts", StringType()), \
StructField("property", ArrayType(StructType( [StructField("name", StringType()), StructField("val", StringType())] )))])
data = [[1, "2010", "2020", [["PID", "P123"], ["Eng", "PA111"], ["Town", "999"], ["Act", "123.1"]]],\
[2, "2011", "2012", [["PID", "P456"], ["Eng", "PA222"], ["Town", "777"], ["Act", "234.1"]]]]
df = spark.createDataFrame(data,schema=schema)
df.show(truncate=False)
+---+--------+------+------------------------------------------------------+
|id |start_ts|end_ts|property |
+---+--------+------+------------------------------------------------------+
|1 |2010 |2020 |[[PID, P123], [Eng, PA111], [Town, 999], [Act, 123.1]]|
|2 |2011 |2012 |[[PID, P456], [Eng, PA222], [Town, 777], [Act, 234.1]]|
+---+--------+------+------------------------------------------------------+
Flattening and pivoting:
df_flatten = df.rdd.flatMap(lambda x: [(x[0],x[1], x[2], y) for y in x[3]]).toDF(['id', 'start_ts', 'end_ts', 'property'])\
.select('id', 'start_ts', 'end_ts', col("property").cast("string"))
df_split = df_flatten.select('id', 'start_ts', 'end_ts', regexp_replace(df_flatten.property, "[\[\]]", "").alias("replacced_col"))\
.withColumn("arr", split(col("replacced_col"), ", "))\
.select(col("arr")[0].alias("col1"), col("arr")[1].alias("col2"), 'id', 'start_ts', 'end_ts')
final_df = df_split.groupby(df_split.id,)\
.pivot("col1")\
.agg(first("col2"))\
.join(df,'id').drop("property")
Output:
final_df.show()
+---+-----+-----+----+----+--------+------+
| id| Act| Eng| PID|Town|start_ts|end_ts|
+---+-----+-----+----+----+--------+------+
| 1|123.1|PA111|P123| 999| 2010| 2020|
| 2|234.1|PA222|P456| 777| 2011| 2012|
+---+-----+-----+----+----+--------+------+
I'm looking for a way to aggregate by month my data. I want firstly to keep only month in my visitdate. My DataFrame looks like this:
Row(visitdate = 1/1/2013,
patientid = P1_Pt1959,
amount = 200,
note = jnut,
)
My objectif subsequently is to group by visitdate and calculate the sum of amount. I tried this :
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
file_path = "G:/Visit Data.csv"
patients = spark.read.csv(file_path,header = True)
patients.createOrReplaceTempView("visitdate")
sqlDF = spark.sql("SELECT visitdate,SUM(amount) as totalamount from visitdate GROUP BY visitdate")
sqlDF.show()
This is the result :
visitdate|totalamount|
+----------+-----------+
| 9/1/2013| 10800.0|
|25/04/2013| 12440.0|
|27/03/2014| 16930.0|
|26/03/2015| 18560.0|
|14/05/2013| 13770.0|
|30/06/2013| 13880.0
My objectif is to get something like this:
visitdate|totalamount|
+----------+-----------+
|1/1/2013| 10800.0|
|1/2/2013| 12440.0|
|1/3/2013| 16930.0|
|1/4/2014| 18560.0|
|1/5/2015| 13770.0|
|1/6/2015| 13880.0|
You need to truncate your date's down to months so they group properly, then do a groupBy/sum. There is a spark function to do this for you call date_trunc. For example.
from datetime import date
from pyspark.sql.functions import date_trunc, sum
data = [
(date(2000, 1, 2), 1000),
(date(2000, 1, 2), 2000),
(date(2000, 2, 3), 3000),
(date(2000, 2, 4), 4000),
]
df = spark.createDataFrame(sc.parallelize(data), ["date", "amount"])
df.groupBy(date_trunc("month", df.date)).agg(sum("amount"))
+-----------------------+-----------+
|date_trunc(month, date)|sum(amount)|
+-----------------------+-----------+
| 2000-01-01 00:00:00| 3000|
| 2000-02-01 00:00:00| 7000|
+-----------------------+-----------+
Q: Is there is any way to merge two dataframes or copy a column of a dataframe to another in PySpark?
For example, I have two Dataframes:
DF1
C1 C2
23397414 20875.7353
5213970 20497.5582
41323308 20935.7956
123276113 18884.0477
76456078 18389.9269
the seconde dataframe
DF2
C3 C4
2008-02-04 262.00
2008-02-05 257.25
2008-02-06 262.75
2008-02-07 237.00
2008-02-08 231.00
Then i want to add C3 of DF2 to DF1 like this:
New DF
C1 C2 C3
23397414 20875.7353 2008-02-04
5213970 20497.5582 2008-02-05
41323308 20935.7956 2008-02-06
123276113 18884.0477 2008-02-07
76456078 18389.9269 2008-02-08
I hope this example was clear.
rownum + window function i.e solution 1 or zipWithIndex.map i.e solution 2 should help in this case.
Solution 1 : You can use window functions to get this kind of
Then I would suggest you to add rownumber as additional column name to Dataframe say df1.
DF1
C1 C2 columnindex
23397414 20875.7353 1
5213970 20497.5582 2
41323308 20935.7956 3
123276113 18884.0477 4
76456078 18389.9269 5
the second dataframe
DF2
C3 C4 columnindex
2008-02-04 262.00 1
2008-02-05 257.25 2
2008-02-06 262.75 3
2008-02-07 237.00 4
2008-02-08 231.00 5
Now .. do inner join of df1 and df2 that's all...
you will get below ouput
something like this
from pyspark.sql.window import Window
from pyspark.sql.functions import rowNumber
w = Window().orderBy()
df1 = .... // as showed above df1
df2 = .... // as shown above df2
df11 = df1.withColumn("columnindex", rowNumber().over(w))
df22 = df2.withColumn("columnindex", rowNumber().over(w))
newDF = df11.join(df22, df11.columnindex == df22.columnindex, 'inner').drop(df22.columnindex)
newDF.show()
New DF
C1 C2 C3
23397414 20875.7353 2008-02-04
5213970 20497.5582 2008-02-05
41323308 20935.7956 2008-02-06
123276113 18884.0477 2008-02-07
76456078 18389.9269 2008-02-08
Solution 2 : Another good way(probably this is best :)) in scala, which you can translate to pyspark :
/**
* Add Column Index to dataframe
*/
def addColumnIndex(df: DataFrame) = sqlContext.createDataFrame(
// Add Column index
df.rdd.zipWithIndex.map{case (row, columnindex) => Row.fromSeq(row.toSeq :+ columnindex)},
// Create schema
StructType(df.schema.fields :+ StructField("columnindex", LongType, false))
)
// Add index now...
val df1WithIndex = addColumnIndex(df1)
val df2WithIndex = addColumnIndex(df2)
// Now time to join ...
val newone = df1WithIndex
.join(df2WithIndex , Seq("columnindex"))
.drop("columnindex")
I thought I would share the python (pyspark) translation for answer #2 above from #Ram Ghadiyaram:
from pyspark.sql.functions import col
def addColumnIndex(df):
# Create new column names
oldColumns = df.schema.names
newColumns = oldColumns + ["columnindex"]
# Add Column index
df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
row + (columnindex,)).toDF()
#Rename all the columns
new_df = reduce(lambda data, idx: data.withColumnRenamed(oldColumns[idx],
newColumns[idx]), xrange(len(oldColumns)), df_indexed)
return new_df
# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)
#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
'inner').drop("columnindex")
for python3 version,
from pyspark.sql.types import StructType, StructField, LongType
def with_column_index(sdf):
new_schema = StructType(sdf.schema.fields + [StructField("ColumnIndex", LongType(), False),])
return sdf.rdd.zipWithIndex().map(lambda row: row[0] + (row[1],)).toDF(schema=new_schema)
df1_ci = with_column_index(df1)
df2_ci = with_column_index(df2)
join_on_index = df1_ci.join(df2_ci, df1_ci.ColumnIndex == df2_ci.ColumnIndex, 'inner').drop("ColumnIndex")
I referred to his(#Jed) answer
from pyspark.sql.functions import col
def addColumnIndex(df):
# Get old columns names and add a column "columnindex"
oldColumns = df.columns
newColumns = oldColumns + ["columnindex"]
# Add Column index
df_indexed = df.rdd.zipWithIndex().map(lambda (row, columnindex): \
row + (columnindex,)).toDF()
#Rename all the columns
oldColumns = df_indexed.columns
new_df = reduce(lambda data, idx:data.withColumnRenamed(oldColumns[idx],
newColumns[idx]), xrange(len(oldColumns)), df_indexed)
return new_df
# Add index now...
df1WithIndex = addColumnIndex(df1)
df2WithIndex = addColumnIndex(df2)
#Now time to join ...
newone = df1WithIndex.join(df2WithIndex, col("columnindex"),
'inner').drop("columnindex")
This answer solved it for me:
import pyspark.sql.functions as sparkf
# This will return a new DF with all the columns + id
res = df.withColumn('id', sparkf.monotonically_increasing_id())
Credit to Arkadi T
Here is an simple example that can help you even if you have already solve the issue.
//create First Dataframe
val df1 = spark.sparkContext.parallelize(Seq(1,2,1)).toDF("lavel1")
//create second Dataframe
val df2 = spark.sparkContext.parallelize(Seq((1.0, 12.1), (12.1, 1.3), (1.1, 0.3))). toDF("f1", "f2")
//Combine both dataframe
val combinedRow = df1.rdd.zip(df2.rdd). map({
//convert both dataframe to Seq and join them and return as a row
case (df1Data, df2Data) => Row.fromSeq(df1Data.toSeq ++ df2Data.toSeq)
})
// create new Schema from both the dataframe's schema
val combinedschema = StructType(df1.schema.fields ++ df2.schema.fields)
// Create a new dataframe from new row and new schema
val finalDF = spark.sqlContext.createDataFrame(combinedRow, combinedschema)
finalDF.show
Expanding on Jed's answer, in response to Ajinkya's comment:
To get the same old column names, you need to replace "old_cols" with a column list of the newly named indexed columns. See my modified version of the function below
def add_column_index(df):
new_cols = df.schema.names + ['ix']
ix_df = df.rdd.zipWithIndex().map(lambda (row, ix): row + (ix,)).toDF()
tmp_cols = ix_df.schema.names
return reduce(lambda data, idx: data.withColumnRenamed(tmp_cols[idx], new_cols[idx]), xrange(len(tmp_cols)), ix_df)
Not the better way performance wise.
df3=df1.crossJoin(df2).show(3)
To merge columns from two different dataframe you have first to create a column index and then join the two dataframes. Indeed, two dataframes are similar to two SQL tables. To make a connection you have to join them.
If you don't care about the final order of the rows you can generate the index column with monotonically_increasing_id().
Using the following code you can check that monotonically_increasing_id generates the same index column in both dataframes (at least up to a billion of rows), so you won't have any error in the merged dataframe.
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
sample_size = 1E9
sdf1 = spark.range(1, sample_size).select(F.col("id").alias("id1"))
sdf2 = spark.range(1, sample_size).select(F.col("id").alias("id2"))
sdf1 = sdf1.withColumn("idx", sf.monotonically_increasing_id())
sdf2 = sdf2.withColumn("idx", sf.monotonically_increasing_id())
sdf3 = sdf1.join(sdf2, 'idx', 'inner')
sdf3 = sdf3.withColumn("diff", F.col("id1")-F.col("id2")).select("diff")
sdf3.filter(F.col("diff") != 0 ).show()
You can use a combination of monotonically_increasing_id (guaranteed to always be increasing) and row_number (guaranteed to always give the same sequence). You cannot use row_number alone because it needs to be ordered by something. So here we order by monotonically_increasing_id. I am using Spark 2.3.1 and Python 2.7.13.
from pandas import DataFrame
from pyspark.sql.functions import (
monotonically_increasing_id,
row_number)
from pyspark.sql import Window
DF1 = spark.createDataFrame(DataFrame({
'C1': [23397414, 5213970, 41323308, 123276113, 76456078],
'C2': [20875.7353, 20497.5582, 20935.7956, 18884.0477, 18389.9269]}))
DF2 = spark.createDataFrame(DataFrame({
'C3':['2008-02-04', '2008-02-05', '2008-02-06', '2008-02-07', '2008-02-08']}))
DF1_idx = (
DF1
.withColumn('id', monotonically_increasing_id())
.withColumn('columnindex', row_number().over(Window.orderBy('id')))
.select('columnindex', 'C1', 'C2'))
DF2_idx = (
DF2
.withColumn('id', monotonically_increasing_id())
.withColumn('columnindex', row_number().over(Window.orderBy('id')))
.select('columnindex', 'C3'))
DF_complete = (
DF1_idx
.join(
other=DF2_idx,
on=['columnindex'],
how='inner')
.select('C1', 'C2', 'C3'))
DF_complete.show()
+---------+----------+----------+
| C1| C2| C3|
+---------+----------+----------+
| 23397414|20875.7353|2008-02-04|
| 5213970|20497.5582|2008-02-05|
| 41323308|20935.7956|2008-02-06|
|123276113|18884.0477|2008-02-07|
| 76456078|18389.9269|2008-02-08|
+---------+----------+----------+