Hello Good People of the Internet!
First time asking...
I have a modern PC running Fedora 24 with a real-time patch (CCRMA audio tools) with an ASUS Essence STX II sterio sound card installed on PCIe. With it we run a playback/capture application. Also, we need to integrate CAN and BLE into the system and have a PCIe-card for each of these functions. The CAN PCIe card is from PEAK and the BLE card is an Intel 8260 M2 card that HP have put on a PCIe card (AFAIK).
With only the audio card installed it works fine (using ALSA as API). When the CAN and BLE is installed the following is observed:
Playback works as before.
One capture channel only returns zero (0) or minus one (-1) in all samples.
The other capture channel returns values in the range -2..2 and when applying our application signal processing low quality, but detectable, expected results are presented.
The ALSA API report no problems in setup and configuration.
CAN and BLE functions as expected.
Without any deeper PCIe experience I suspect that CAN and/or BLE PCIe cards jumble the mapping of the sound card functions.
Can someone:
- Tell me if my hunch is in the ballpark?
- Inform me on where I might go for information on how to rectify the problem?
- ...or, share a solution?
Thanks!
Related
I am currently working on a project which aim to detect Bluetooth and decode Bluetooth packets (I use a Hack RF One to make the detection). I have made a Gnuradio Flowgraph in order to demodulate Bluetooth signal and I am trying to decode visualy the packets by searching a Bluetooth frame on a binary file.
Unfortunately, I didn't succeed to recover a clear view of the Bluetooth signal. To be precise, I am pretty sure that I detect Bluetooth on my sinks but when sending this to a Clock Recovery + Binary Slicer blocks, I am unable to recover interresting data in the binary file (especially the MAC adress of the sending device, which is part of the a Bluetooth packet). Moreover, I would like to know what type of network layer (physical, transport, baseband...) is intercepted in this type of process. In my case, I aim to intercept baseband layer packets.
Additionaly, I am interrested in knowing how to use the gr-bluetooth because I can't find a lot of documentation concerning this block. I think this can be interresting for the development of my project.
Could you please, give me your view, opinion about this problem ? I am stucked at this stage without knowing the exact origin of my issue. (Here is my flowgraph GnuRadio_Flowgraph and a screenshot of one of my Bluetooth detection Detected signal at 2.402GHz).
Thank you very much,
You probably need an ubertooth instead https://www.sparkfun.com/products/10573
I read that the bluetooth frequency skipping is spread wider than the HackRF can read, so at-best, you're going to miss 75% of frames if you only have one hackrf connected.
I'm trying to get data from a mercury analyzer (Seefelder-Messtechnik Hg Analyzer 3000) that gives output to a 9-pin R232 serial port to my OSX 10.10 laptop.
I've followed the steps described here to install the PL-2303 driver:
http://pbxbook.com/other/mac-tty.html
The device manual (http://www.seefelder-messtechnik.com/V71-3-02-21e.pdf) lists the communication protocol as "9600 Baud, 8 data bit, 1 stop bit, no log,
no parities".
I attempt to read from the device by using the 'screen' command:
screen /dev/tty.usbserial 9600
The result is a string of seemingly non-sensical characters that print to the screen in a regular interval:
�8b4����b��8b48bs��8G�8b�8���8������8����< 8�8��b��KW��\b����8b����b� �b�b����KW�K �8b��\G�� �<���8�8b�"���[��؉���bG�3�ˁ�G��\K��[W�pb�8��8ʱ�\pa���ʁ�c t��8�h¡�38b�8�q�����\�8���bS�8b8�8�q���X��8��<��£8���2�8�����ؖ�ؖ�ؖ�8bS��\�܉�ؖ����[S�8��s���fq�8�����������8fq����������S�܊��b���b�؉����\���S��K���ݎ����S��b��b��S����S�\������KS��S�؊��\S�1S�\b�S�؉�\�ذ����KS�\����S����bS�؉�����1S�؊��[����ز������؉\���ز��\����i���$\�$���\��8���$��\�\����܂�زXk�B��7��\k�\X�<��8Xkz��Yj��L�������H�\���]j�،k:��Yj�؈��
I've also tried using 'minicom' rather than screen, and get a different ("?]???ܰ??Yk??2"), but also non-sensical result. I saw that there was another SO query similar to mine that remains unsolved: weird characters displayed during serial communication OSX
Any tips? It looks to me that I'm not interpreting the output correctly, but I don't know what to try next.
The solution was to read from the machine at a higher baud rate (~57600), despite what the manual and online reference said. Reading at 57600 baud made the result plain-text and usable. Thanks for your ideas!
I've followed the steps described here to install the PL-2303 driver
I've also had occasional electrical ground problems with Prolific USB-RS232 adapters. Problem would manifest as garbled data that looked similar to a baud rate issue or what you posted.
You can check if it's a ground issue by measuring for continuity between the ground pin (pin #5) on the DE-9 (aka DB-9) side of the Prolific adapter and the ground pin of the USB side (pin #4, "far left", of the A connector). You'll probably measure infinite resistance with a multimeter. Try the same with a FTDI USB-RS232 adapter, and instead I get a dead short between the ground pins as expected.
Be sure to plug the instrument's and PC's power supplies into the same power strip.
As a last resort try grounding the instrument's chassis/case with the PC using copper wire
I am bit stuck, how can I make my arduino record into .wav files?
The arduino is connected with a microphone, and am using the Arduino ADC.
Any ideas? Will I be able to play them back using my pc?
many question cross my head
1- Is this possible using an arduino Uno
2- Is this possile using just a microphone connected to the Arduino ADC
3- if yes how can i get the wav format.
The idea gonna be like this
Ardiuno microphone-->Uno ADC -->arduino (library making wav sound)--> Storing data to a an SD card connected via SPI or maybe (connecting a Raspberry as a storage device)
also another question:
4- Do I need an amplifier due to the act that analog output from the microphone is very weak so the ADC couldn't detect the variation
In another log i had seen that i should connect the microphone to a level shifter.And that cause of the analog output is AC so i have to make the negative wave as 0 (for 10 it ADC)
the zero point as 512 and the positive as 1024 (10 bit ADC).(really i'm not sure about this part)
doing some research i got this library "https://github.com/TMRh20/TMRpcm/wiki/Advanced-Features#recording-audio" which is supposed to do the job, I mean making some wav file from the analog input.
So any help would be appreciated
Thx in advance,
Salah Laaroussi
Yes, although a bit complex it is very possible to do this via an uno.
The biggest hurdles to overcome is the limited amount of RAM and the clock speed. You will have to setup twin buffers to handle writing to the SD card. Make sure the card has a high enough write speed or the entire program will come to a screeching halt as you will run out of memory.
apc mag has a great article detailing out the circuit and code.
http://apcmag.com/arduino-projects-digital-audio-recorder.htm/
There are many things you haven't prepared yet:
output of microphone (assuming you know about electronics: still requires a biasing circuit e.g. a resistor + capacitor).
the output of the microphone is still very weak (in the magnitude of mV), which Arduino is incapable of capturing so you need a pre-amplifier
the design of the pre-amplifier will also include DC offset which makes the output of the microphone all above 0VDC which is in the range of the Arduino ADC otherwise the arduino will capture only those above 0VDC.
I have a telephony modem which gives voice to my interfaced application via a serial USB ttyUSB0 in 16bit PCM 8000hz. I am able to capture this data and play with audacity. I want this port to be detected as a sound device in linux (I am on ubuntu). Is it possible? Are there any other options?
I'm guessing you are using a huawei 3G modem or something similar which gives ttyUSB1 for audio. Make sure you have the serial driver binded to it. Then simply pass the port itself as a "file" for input for any program of your choice.You need root access for that.You figured out the audio settings so it must be enough.I have voice calling working in UBUNTU 11.10 with Huawei. So let me know if i can help any further.
Ok, I see it's very old question but answers helped me to get a right direction so I decided to help others.
The one way to achieve (in addition to below) what are you are
looking for is to write dynamic kernel module.
Have it register as a sound device, and check that it has a GSM
module present (which module is it exactly can be recognized in
dmesg, lsmod, or output).
Then establish communication between user space representation as a
sound card and serial usb module.
The other way is to get module that you recognized by dmesg, lsmod and extend its functionality as a sound card.
All are tricky tasks because:
in the first case you have to resolve intermodule communication at the kernel level...... which is, lets say, a little hard even if programmer has a right background in subject.
the second case is hard in that you have to deal with:
USB stack (which is little unpleasant for human beings) and
sound subsystem (which is a little burdensome because of historical issues).
Without being an experienced kernel programmer there are small chances to succeed.
I built a robot from a thin client pc (can run Windows CE or Linux) and two servo motors. I put USB ends on the servo motors, so when they are plugged in to the thin client they continuously run. In Linux, how could I set the amount of current or voltage going from the USB ports to the servo motors? Would I be able to run a shell script to set the power of a certain USB port to slow down a motor or stop one? If this cannot be done through software, what is the easiest way to do this through hardware without having to buy too much?
The USB voltage is fixed at a nominal 5 volts and cannot be controlled.
The behavior of USB devices regarding their current draw is well defined in the USB specifications. USB devices are supposed to draw up to 1 unit load (100mA) unless they have negotiated a higher load from the USB host. It's quite likely that the servo motors that you have are going to need to draw higher currents than that, and wouldn't be able to request it without being a USB device and negotiating with the host.
It's also likely, depending on the servo motor that you are trying to control, that you'll need to either provide a PWM signal or an analogue voltage to control motor position. USB hosts are not intended to provide either of these.
Your best options to drive your motor from your PC are:
Get a dedicated USB controller for your servo motor (if one exists)
Make your own, based on a small microprocessor (eg. using an arduino)
Choose a different port on the PC. If available, PC parallel ports can be controlled to provide control for motor drivers.
The answers here seem to say it is a hardware issue, but I think this is a software issue. ASUS has Ai Charge which more then doubles the volts to charging Apple products from a standard 2.0 usb port.
USB 1.0, 2.0 and 3.0 Specs (All at 5 volts) 4 Wires (2 Data and 2
dedicated power)
Voltage Breakdown: USB 1.0 and USB 2.0 = 0.5A or 500 mA = 2.5 watt
USB 3.0 = 0.9A or 900mA = 4.5 watt Wall wart = 1.5A or 1500 mA = 7.5
watt Ai Charge = 1.2A or 1200mA = 6 watt
Ai Charge works on ASUS and non-ASUS motherboards and is a program you can install in Windows.
Personally I HATE Apple so I want to figure out a way to do this 1.2A usb 2.0 output trick for my netbook while running Linux.
I don't believe it is possible to directly manipulate the USB voltages. They are designed to provide a +5V output at all times unless power is diminised with other hubs.
You might be better served posting this question on http://electronics.stackexchange.com
you need to use PWM to control motors speed, to do that you need a micro controller, PIC18F series supports USB communication, there are plenty of code samples available internet how to use USB in PIC18F series, also you need a transistor array or H-Bridge to control mortors from PIC.
The simplest way to communicate is, program a USB serial in PIC18F micro controller, and when you plug that 18F to your computer, it will detect USB serial port, so you can send the commands to serial port to control speeds.
I dont think its possible, and even if it was, consider this: The USB port is not suposed to power motors because you can burn the USB port. USB is limited to 500mA (or there abouts) and any power device like a motor can potentially require more than that.
Another thing is that servos should be driven with constant voltage, and the speed is controlled by timing impulses on the control wire.
http://en.wikipedia.org/wiki/Pulse-width_modulation
You should use a driver (hardware) to power the motor with an external power source.
This is transistor's purpose, or try with a potentiometer