If a thread waits on an MVar that doesn't have a possible producer, GHC is usually smart enough to throw BlockedIndefinitelyOnMVar and kill the thread. How is this detection implemented?
Does it check that all references to an MVar are from threads that are waiting on it, or something like that?
It uses the garbage collector.
From Control.Concurrent:
GHC attempts to detect when threads are deadlocked using the garbage
collector. A thread that is not reachable (cannot be found by
following pointers from live objects) must be deadlocked, and in this
case the thread is sent an exception. The exception is either
'BlockedIndefinitelyOnMVar', 'BlockedIndefinitelyOnSTM',
'NonTermination', or 'Deadlock', depending on the way in which the
thread is deadlocked.
Note that this feature is intended for debugging, and should not be
relied on for the correct operation of your program. There is no
guarantee that the garbage collector will be accurate enough to detect
your deadlock, and no guarantee that the garbage collector will run in
a timely enough manner. Basically, the same caveats as for finalizers
apply to deadlock detection.
There is a subtle interaction between deadlock detection and
finalizers (as created by 'Foreign.Concurrent.newForeignPtr' or the
functions in "System.Mem.Weak"): if a thread is blocked waiting for a
finalizer to run, then the thread will be considered deadlocked and
sent an exception. So preferably don't do this, but if you have no
alternative then it is possible to prevent the thread from being
considered deadlocked by making a 'StablePtr' pointing to it. Don't
forget to release the 'StablePtr' later with 'freeStablePtr'.
Related
I've this problem, I need to understand if a Linux thread is running or not due to crash and not for normal exit. The reason to do that is try to restart the thread without reset\restart all system.
The pthread_join() seems not a good option because I've several thread to monitoring and the function return on specific thread, It doesn't work in "parallel". At moment I've a keeep live signal from thread to main but I'm looking for some system call or thread attribute to understand the state
Any suggestion?
P
Thread "crashes"
How to detect if a linux thread is crashed
if (0) //...
That is, the only way that a pthreads thread can terminate abnormally while other threads in the process continue to run is via thread cancellation,* which is not well described as a "crash". In particular, if a signal is received whose effect is abnormal termination then the whole process terminates, not just the thread that handled the signal. Other kinds of errors do not cause threads to terminate.
On the other hand, if by "crash" you mean normal termination in response to the thread detecting an error condition, then you have no limitation on what the thread can do prior to terminating to communicate about its state. For example,
it could update a shared object that tracks information about your threads
it could write to a pipe designated for the purpose
it could raise a signal
If you like, you can use pthread_cleanup_push() to register thread cleanup handlers to help with that.
On the third hand, if you're asking about detecting live threads that are failing to make progress -- because they are deadlocked, for example -- then your best bet is probably to implement some form of heartbeat monitor. That would involve each thread you want to monitor periodically updating a shared object that tracks the time of each thread's last update. If a thread goes too long between beats then you can guess that it may be stalled. This requires you to instrument all the threads you want to monitor.
Thread cancellation
You should not use thread cancellation. But if you did, and if you include termination because of cancellation in your definition of "crash", then you still have all the options above available to you, but you must engage them by registering one or more cleanup handlers.
GNU-specific options
The main issues with using pthread_join() to check thread state are
it doesn't work for daemon threads, and
pthread_join() blocks until the specified thread terminates.
For daemon threads, you need one of the approaches already discussed, but for ordinary threads on GNU/Linux, Glibc provides non-standard pthread_tryjoin_np(), which performs a non-blocking attempt to join a thread, and also pthread_timedjoin_np(), which performs a join attempt with a timeout. If you are willing to rely on Glibc-specific functions then one of these might serve your purpose.
Linux-specific options
The Linux kernel makes per-process thread status information available via the /proc filesystem. See How to check the state of Linux threads?, for example. Do be aware, however, that the details vary a bit from one kernel version to another. And if you're planning to do this a lot, then also be aware that even though /proc is a virtual filesystem (so no physical disk is involved), you still access it via slow-ish I/O interfaces.
Any of the other alternatives is probably better than reading files in /proc. I mention it only for completeness.
Overall
I'm looking for some system call or thread attribute to understand the state
The pthreads API does not provide a "have you terminated?" function or any other such state-inquiry function, unless you count pthread_join(). If you want that then you need to roll your own, which you can do by means of some of the facilities already discussed.
*Do not use thread cancellation.
What are the ways to detect deadlocks in a live multi-threaded application?
If we found there is a deadlock, are there any ways to resolve it, without taking down/restarting the application?
There are two popular ways to detect deadlocks.
One is to have threads set checkpoints. For example, if you have a thread that has a work loop, you set a timer at the beginning of doing work that's set for longer than you think the work could possibly take. If the timer fires, you assume the thread is deadlocked. When the work is done, you cancel the timer.
Another (sometimes used in combination) is to have things that a thread might block on track what other resources a thread might hold. This can directly detect an attempt to acquire one lock while holding another one when other threads have acquired those locks in the opposite order.
This can even detect deadlock risk without the deadlock actually occurring. If one thread acquires lock A then B and another acquires lock B then A, there is no deadlock unless they overlap. But this method can detect it.
Advanced deadlock detection is typically only used during debugging. Other than coding the application to check each blocking lock for a possible deadlock and knowing what to do if it happens, the only thing you can do after a deadlock is tear the application down. You can't release locks blindly because the resources they protect may be in an inconsistent state.
Sometimes you deliberately write code that you know can deadlock and specifically code it to avoid the problem. For example, if you know lots of threads take lock A and then try to acquire lock B, and some other thread needs to do the reverse, you can code it do a non-blocking attempt to lock B and release lock A if it fails.
Typically, it's more useful to spend your effort making deadlocks impossible rather than making the code detect and work around deadlocks.
Python has a feature called the faulthandler that's very useful for dealing with deadlocks:
import faulthandler
faulthandler.register(signal.SIGUSR1)
If you're using C++ or any compiler that uses glibc, you can use the backtrace() functions in execinfo.h to print a stacktrace and exit gracefully when you get a signal. You can take a deadlocked program, send it a signal and get a list of all the threads.
In Java, use jstack <pid> on the stuck process.
I have a thread which repeatedly takes from an MVar/Chan/TQueue/etc, then does some processing. Will the thread be GC'd if it has the sole remaining reference to this MVar/Chan/TQueue, and so is blocked indefinitely? (Does it matter whether it's an MVar, a Chan, or a TQueue?) And can we rely on this GC to happen? Under what conditions might it not happen?
If the GC doesn't happen or it's considered too fragile, what is the preferred way of shutting down a thread that is blocked on an indefinite read like this?
So to summarize, the answer is that a sleeping thread which is determined to have the sole reference to an MVar and TVar (which back Chan, TQueue, TMVar, etc), and is blocked on some use of said reference will be thrown an exception, which, if uncaught, will kill the thread. It really is that simple.
Caveats are that:
You don't know when GC will run, or how aggressive it will be (perhaps the MVar has been promoted to an older generation which is collected infrequently?), so you shouldn't make assumptions about when an object becomes unreachable in the eyes of the runtime. Note that this is true of any runtime value that has become unreachable in a GC language, so it's not really specific to Haskell concurrency.
It can in theory be difficult to reason about when objects are reachable, especially in the presence of optimizations. Okay, fine.
So, it's perfectly reasonable to use these runtime-triggered exceptions to shut down a thread (and reclaim its memory) that would otherwise be asleep forever, as long as you don't care about the timing of when the thread is shut down and just want some vague assurance that the thread can be shut down at some point when the runtime needs to free up some memory. This is exactly the same sort of reasoning you'd do for any values that pass out of scope in a GC language---at some point, maybe soon, maybe never, maybe an hour from now, the GC will reclaim this memory. If you need tighter control over the timing, etc, don't outsource the task to the GC.
I've been reading up on multithreading and shared resources access and one of the many (for me) new concepts is the mutex lock. What I can't seem to find out is what is actually happening to the thread that finds a "critical section" is locked. It says in many places that the thread gets "blocked", but what does that mean? Is it suspended, and will it resume when the lock is lifted? Or will it try again in the next iteration of the "run loop"?
The reason I ask, is because I want to have system supplied events (mouse, keyboard, etc.), which (apparantly) are delivered on the main thread, to be handled in a very specific part in the run loop of my secondary thread. So whatever event is delivered, I queue in my own datastructure. Obviously, the datastructure needs a mutex lock because it's being modified by both threads. The missing puzzle-piece is: what happens when an event gets delivered in a function on the main thread, I want to queue it, but the queue is locked? Will the main thread be suspended, or will it just jump over the locked section and go out of scope (losing the event)?
Blocked means execution gets stuck there; generally, the thread is put to sleep by the system and yields the processor to another thread. When a thread is blocked trying to acquire a mutex, execution resumes when the mutex is released, though the thread might block again if another thread grabs the mutex before it can.
There is generally a try-lock operation that grab the mutex if possible, and if not, will return an error. But you are eventually going to have to move the current event into that queue. Also, if you delay moving the events to the thread where they are handled, the application will become unresponsive regardless.
A queue is actually one case where you can get away with not using a mutex. For example, Mac OS X (and possibly also iOS) provides the OSAtomicEnqueue() and OSAtomicDequeue() functions (see man atomic or <libkern/OSAtomic.h>) that exploit processor-specific atomic operations to avoid using a lock.
But, why not just process the events on the main thread as part of the main run loop?
The simplest way to think of it is that the blocked thread is put in a wait ("sleeping") state until the mutex is released by the thread holding it. At that point the operating system will "wake up" one of the threads waiting on the mutex and let it acquire it and continue. It's as if the OS simply puts the blocked thread on a shelf until it has the thing it needs to continue. Until the OS takes the thread off the shelf, it's not doing anything. The exact implementation -- which thread gets to go next, whether they all get woken up or they're queued -- will depend on your OS and what language/framework you are using.
Too late to answer but I may facilitate the understanding. I am talking more from implementation perspective rather than theoretical texts.
The word "blocking" is kind of technical homonym. People may use it for sleeping or mere waiting. The term has to be understood in context of usage.
Blocking means Waiting - Assume on an SMP system a thread B wants to acquire a spinlock held by some other thread A. One of the mechanisms is to disable preemption and keep spinning on the processor unless B gets it. Another mechanism probably, an efficient one, is to allow other threads to use processor, in case B does not gets it in easy attempts. Therefore we schedule out thread B (as preemption is enabled) and give processor to some other thread C. In this case thread B just waits in the scheduler's queue and comes back with its turn. Understand that B is not sleeping just waiting rather passively instead of busy-wait and burning processor cycles. On BSD and Solaris systems there are data-structures like turnstiles to implement this situation.
Blocking means Sleeping - If the thread B had instead made system call like read() waiting data from network socket, it cannot proceed until it gets it. Therefore, some texts casually use term blocking as "... blocked for I/O" or "... in blocking system call". Actually, thread B is rather sleeping. There are specific data-structures known as sleep queues - much like luxury waiting rooms on air-ports :-). The thread will be woken up when OS detects availability of data, much like an attendant of the waiting room.
Blocking means just that. It is blocked. It will not proceed until able. You don't say which language you're using, but most languages/libraries have lock objects where you can "attempt" to take the lock and then carry on and do something different depending on whether you succeeded or not.
But in, for example, Java synchronized blocks, your thread will stall until it is able to acquire the monitor (mutex, lock). The java.util.concurrent.locks.Lock interface describes lock objects which have more flexibility in terms of lock acquisition.
How do I determine if a detached pthread is still alive ?
I have a communication channel with the thread (a uni-directional queue pointing outwards from the thread) but what happens if the thread dies without a gasp?
Should I resign myself to using process signals or can I probe for thread liveliness somehow?
For a joinable (i.e NOT detached) pthread you could use pthread_kill like this:
int ret = pthread_kill(YOUR_PTHREAD_ID, 0);
If you get a ESRCH value, it might be the case that your thread is dead.
However this doesn't apply to a detached pthreads because after it has ended its thread ID can be reused for another thread.
From the comments:
The answer is wrong because if the thread is detached and is not
alive, the pthread_t is invalid. You can't pass it to pthread_kill. It
could, for example, be a pointer to a structure that was freed,
causing your program to crash. POSIX says, "A conforming
implementation is free to reuse a thread ID after its lifetime has
ended. If an application attempts to use a thread ID whose lifetime
has ended, the behavior is undefined." – Thanks #DavidSchwartz
This question assumes a design with an unavoidable race condition.
Presumably, you plan to do something like this:
Check to see if thread is alive
Wait for message from thread
The problem is that this sequence is not atomic and cannot be fixed. Specifically, what if the thread you are checking dies between step (1) and step (2)?
Race conditions are evil; rare race conditions doubly so. Papering over something 90% reliable with something 99.999% reliable is one of the worst decisions you can make.
The right answer to your question is "don't do that". Instead, fix your application so that threads do not die randomly.
If that is impossible, and some thread is prone to crashing, and you need to recover from that... Then your design is fundamentally flawed and you should not be using a thread. Put that unreliable thing in a different process and use a pipe to communicate with it instead. Process death closes file descriptors, and reading a pipe whose other end has been closed has well-defined, easily detected, race-free behavior.
It is probably undefined behaviour when you send a signal to an already dead thread. Your application might crash.
see http://sourceware.org/bugzilla/show_bug.cgi?id=4509 and http://udrepper.livejournal.com/16844.html