how many JVMs are running when Spark Local mode is used? - apache-spark

newbie here, but really enjoyed Spark so far.
I did the following (using a laptop, running Windows 7):
start the master by using command prompt window:
spark-class org.apache.spark.deploy.master.Master
start one worker by typing the following:
spark-class org.apache.spark.deploy.worker.Worker spark://localhost:7077
repeat step 2, in other words, start another worker by using the same above command.
Now, I have one master, two workers, all in the same physical machine. Based on what I have been reading, this should be considered as the "local mode"... not sure about this, hope someone can confirm?
Also, from what I have read, local mode should have master and workers in one SINGLE JVM. But by running a small utility code, I can see that master is in one JVM, and two workers each stays in one JVM, so there are three JVMs, and they are different JVMs.
Can someone tell me which part I did wrong, or, what is the problem with my understanding?
Also, for this local model, there is no cluster manager, right?
Many thanks!

Local mode is a single JVM. Local mode is when you specify the master, via --master command line switch, as local[*]. This can be done via spark-submit or spark-shell.
This explains it pretty well.

Now, I have one master, two workers, all in the same physical machine. Based on what I have been reading, this should be considered as the "local mode"... not sure about this, hope someone can confirm?
It is not. It is a standalone mode, where you Spark's own cluster manager. Unlike local it is fully distributed. It will use:
For cluster manager:
Single JVM for each cluster master (one in your case, more in HA mode).
Single JVM for each started worker.
Optionally additional JVMs for services like history server, or shuffle service.
For application:
Single JVM for the driver.
Single JVM for each executor.
In local mode there is only one JVM, as already stated by Greg

Related

Understanding Spark Submit Yarn Client vs Cluster mode [duplicate]

TL;DR: In a Spark Standalone cluster, what are the differences between client and cluster deploy modes? How do I set which mode my application is going to run on?
We have a Spark Standalone cluster with three machines, all of them with Spark 1.6.1:
A master machine, which also is where our application is run using spark-submit
2 identical worker machines
From the Spark Documentation, I read:
(...) For standalone clusters, Spark currently supports two deploy modes. In client mode, the driver is launched in the same process as the client that submits the application. In cluster mode, however, the driver is launched from one of the Worker processes inside the cluster, and the client process exits as soon as it fulfills its responsibility of submitting the application without waiting for the application to finish.
However, I don't really understand the practical differences by reading this, and I don't get what are the advantages and disadvantages of the different deploy modes.
Additionally, when I start my application using start-submit, even if I set the property spark.submit.deployMode to "cluster", the Spark UI for my context shows the following entry:
So I am not able to test both modes to see the practical differences. That being said, my questions are:
1) What are the practical differences between Spark Standalone client deploy mode and cluster deploy mode? What are the pro's and con's of using each one?
2) How to I choose which one my application is going to be running on, using spark-submit?
What are the practical differences between Spark Standalone client
deploy mode and cluster deploy mode? What are the pro's and con's of
using each one?
Let's try to look at the differences between client and cluster mode.
Client:
Driver runs on a dedicated server (Master node) inside a dedicated process. This means it has all available resources at it's disposal to execute work.
Driver opens up a dedicated Netty HTTP server and distributes the JAR files specified to all Worker nodes (big advantage).
Because the Master node has dedicated resources of it's own, you don't need to "spend" worker resources for the Driver program.
If the driver process dies, you need an external monitoring system to reset it's execution.
Cluster:
Driver runs on one of the cluster's Worker nodes. The worker is chosen by the Master leader
Driver runs as a dedicated, standalone process inside the Worker.
Driver programs takes up at least 1 core and a dedicated amount of memory from one of the workers (this can be configured).
Driver program can be monitored from the Master node using the --supervise flag and be reset in case it dies.
When working in Cluster mode, all JARs related to the execution of your application need to be publicly available to all the workers. This means you can either manually place them in a shared place or in a folder for each of the workers.
Which one is better? Not sure, that's actually for you to experiment and decide. This is no better decision here, you gain things from the former and latter, it's up to you to see which one works better for your use-case.
How to I choose which one my application is going to be running on,
using spark-submit
The way to choose which mode to run in is by using the --deploy-mode flag. From the Spark Configuration page:
/bin/spark-submit \
--class <main-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]
Let's say you are going to perform a spark submit in EMR by doing SSH to the master node.
If you are providing the option --deploy-mode cluster, then following things will happen.
You won't be able to see the detailed logs in the terminal.
Since driver is not created in the Master itself, you won't be able to terminate the job from the terminal.
But in case of --deploy-mode client:
You will be able to see the detailed logs in the terminal.
You will be able to terminate the job from the terminal itself.
These are the basic things that I have noticed till now.
I'm also having the same scenario, here master node use a standalone ec2 cluster. In this setup client mode is appropriate. In this driver is launched directly with in the spark-submit process which acts as a client to the cluster. The Input & output of the application is attached to the console.Thus, this mode is especially suitable for applications that involve REPL.
Else if your application is submitted from a machine far from the worker machines then it is quite common to use cluster mode to minimize the network latency b/w driver & executor.

Does any of the executors run on the driver node in cluster deploy mode?

While running a program in Cluster mode, does any executor also run on the node on which the Driver Program is running.
Following text explains about the cluster mode:
https://spark.apache.org/docs/latest/cluster-overview.html
But doesn't answer this question.
Thanks
Anuj
This depends on the cluster manger implementation, configuration and requested resources. In general cluster manager is free to start multiple containers on the same physical node.
So without additional assumptions - driver can be, but doesn't have to be, colocated with one or more executors.

can someone let me know how to decide --executor memory and --num-of-executors in spark submit job . What is the concept of -number-of-cores

How to decide the --executor memory and --num-of-executors in spark submit job . What is the concept of -number-of-cores.
Also the clear difference between cluster and client deploy mode. How to choose the deploy mode
The first part of your question where you ask about --executor-memory, --num-executors and --num-executor-cores usually depends on the variety of task your Spark application is going to perform.
Executor Memory indicates the amount of physical memory you want to allocate to the JVM that runs the executor. The value will depend on your requirement. For example, if you're just going to parse a large text file you'll require much less memory than what you need for, say, Image Processing.
The number of executors variable is the number of Executor JVMs you want to spawn on your cluster. Again, it depends on a lot of factors like your cluster size, type of machines in the cluster etc.
Each executor splits the code and performs the instructions in tasks. These tasks are performed in executor cores (or processors). This helps you to achieve parallelism within a certain executor but make sure you don't allocate all the cores of a machine to its executor because some are needed for normal functioning of it.
On to your second part of the question, we have two --deploy-mode in Spark that you have already named i.e. cluster and client.
client mode is when you connect an external machine to a cluster and you run a spark job from that external machine. Like when you connect your laptop to a cluster and run spark-shell from it. The driver JVM is invoked in your laptop and the session is killed as soon as you disconnect your laptop. Similar is the case for a spark-submit job, if you run a job with --deploy-mode client, your laptop acts like the master but the job is killed as soon as it is disconnected (not sure about this one).
cluster mode: When you specify --deploy-mode cluster in your job then even if you run it using your laptop or any other machine, the job (JAR) is taken care of by the ResourceManager and ApplicationMaster, just like any other application in YARN. You won't be able to see the output on your screen but anyway most complex Spark jobs write to a FS so that's taken care of that way.

Spark yarn cluster vs client - how to choose which one to use?

The spark docs have the following paragraph that describes the difference between yarn client and yarn cluster:
There are two deploy modes that can be used to launch Spark applications on YARN. In cluster mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.
I'm assuming there are two choices for a reason. If so, how do you choose which one to use?
Please use facts to justify your response so that this question and answer(s) meet stackoverflow's requirements.
There are a few similar questions on stackoverflow, however those questions focus on the difference between the two approaches, but don't focus on when one approach is more suitable than the other.
A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).
Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to use cluster mode to minimize network latency between the drivers and the executors. Note that cluster mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications." -- Submitting Applications
What I understand from this is that both strategies use the cluster to distribute tasks; the difference is where the "driver program" runs: locally with spark-submit, or, also in the cluster.
When you should use either of them is detailed in the quote above, but I also did another thing: for big jars, I used rsync to copy them to the cluster (or even to master node) with 100 times the network speed, and then submitted from the cluster. This can be better than "cluster mode" for big jars. Note that client mode does not probably transfer the jar to the master. At that point the difference between the 2 is minimal. Probably client mode is better when the driver program is idle most of the time, to make full use of cores on the local machine and perhaps avoid transferring the jar to the master (even on loopback interface a big jar takes quite a bit of seconds). And with client mode you can transfer (rsync) the jar on any cluster node.
On the other hand, if the driver is very intensive, in cpu or I/O, cluster mode may be more appropriate, to better balance the cluster (in client mode, the local machine would run both the driver and as many workers as possible, making it over loaded and making it that local tasks will be slower, making it such that the whole job may end up waiting for a couple of tasks from the local machine).
Conclusion :
To sum up, if I am in the same local network with the cluster, I would
use the client mode and submit it from my laptop. If the cluster is
far away, I would either submit locally with cluster mode, or rsync
the jar to the remote cluster and submit it there, in client or
cluster mode, depending on how heavy the driver program is on
resources.*
AFAIK With the driver program running in the cluster, it is less vulnerable to remote disconnects crashing the driver and the entire spark job.This is especially useful for long running jobs such as stream processing type workloads.
Spark Jobs Running on YARN
When running Spark on YARN, each Spark executor runs as a YARN container. Where MapReduce schedules a container and fires up a JVM for each task, Spark hosts multiple tasks within the same container. This approach enables several orders of magnitude faster task startup time.
Spark supports two modes for running on YARN, “yarn-cluster” mode and “yarn-client” mode. Broadly, yarn-cluster mode makes sense for production jobs, while yarn-client mode makes sense for interactive and debugging uses where you want to see your application’s output immediately.
Understanding the difference requires an understanding of YARN’s Application Master concept. In YARN, each application instance has an Application Master process, which is the first container started for that application. The application is responsible for requesting resources from the ResourceManager, and, when allocated them, telling NodeManagers to start containers on its behalf. Application Masters obviate the need for an active client — the process starting the application can go away and coordination continues from a process managed by YARN running on the cluster.
In yarn-cluster mode, the driver runs in the Application Master. This means that the same process is responsible for both driving the application and requesting resources from YARN, and this process runs inside a YARN container. The client that starts the app doesn’t need to stick around for its entire lifetime.
yarn-cluster mode
The yarn-cluster mode is not well suited to using Spark interactively, but the yarn-client mode is. Spark applications that require user input, like spark-shell and PySpark, need the Spark driver to run inside the client process that initiates the Spark application. In yarn-client mode, the Application Master is merely present to request executor containers from YARN. The client communicates with those containers to schedule work after they start:
yarn-client mode
This table offers a concise list of differences between these modes:
Reference: https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/ - Apache Spark Resource Management and YARN App Models (web.archive.com mirror)
In yarn-cluster mode, the driver program will run on the node where application master is running where as in yarn-client mode the driver program will run on the node on which job is submitted on centralized gateway node.
Both answers by Ram and Chavati/Wai Lee are useful and helpful, but here I just want to added a couple of other points:
Much has been written about the proximity of driver to the executors, and that is a big factor. The other factors are:
Will the driver process be around until execution of job is finished?
How's returned data being handled?
#1. In spark client mode, the driver process must be up and running the whole time when the spark job is in execution. So if you have a truly long job that say take many hours to run, you need to make sure the driver process is still up and running, and that the driver session is not auto-logout.
On the other hand, after submitting a job to run in cluster mode, the process can go away. The cluster mode will keep running. So this is typically how a production job will run: the job can be triggered by a timer, or by an external event and then the job will run to its completion without worrying about the lifetime of the process submitting the spark job.
#2. In client mode, you can call sc.collect() to gather all the data back from all executors, and then write/save the returned data to a local Linux file on local disk. Now this may not work for cluster mode, as the 'driver' typically run in a different remote host. The data written up therefore need to be persisted in a common mounted volume (such as GPFS, NFS) or in distributed file system like HDFS. If the job is running under Hadoop/YARN, the more common way for cluster mode is simply ask each executor to persist the data to HDFS, and not to run collect( ) at all. Collect() actually have scalability issue when there are a large number of executors returning large amount of data - it can overwhelm the driver process.

Spark Standalone Mode multiple shell sessions (applications)

In Spark 1.0.0 Standalone mode with multiple worker nodes, I'm trying to run a Spark shell from two different computers (same Linux user).
In the documentation, it says "By default, applications submitted to the standalone mode cluster will run in FIFO (first-in-first-out) order, and each application will try to use all available nodes."
The number of cores per worker is set to 4 with 8 being available (via SPARK_JAVA_OPTS="-Dspark.cores.max=4"). Memory is also limited such that enough should be available for both.
However, when looking at the Spark Master WebUI, the shell application that was started later will always remain in state "WAITING" until the first one is exited. The number of cores assigned to it is 0, the Memory per node 10G (same as the one that is already running)
Is there a way to have both shells running at the same time without using Mesos?
Before a shell will start processing on a spark standalone cluster, there has to be sufficient cores and memory. You must specify from each spark shell the number of cores you want, or it will use them all. If you specify 5 cores, with executor memory=10G (the amount of memory you allocated for the executors), and the second spark shell to run with 2 cores, and 10G of memory, the second one will still not start, because the first shell is using both executors, and is using all of the memory on both. If you specify 5G of executor memory for each spark shell, then they can concurrently run.
Essentially you want to have multiple jobs running on a standalone cluster -- unfortunately, it is really not designed to handle this case well. If you want to do that you should use either mesos or yarn.
One workaround to this is to restrict the number of cores per spark shell using total-executor-cores. For example to restrict it to 16 cores, launch it like this:
bin/spark-shell --total-executor-cores 16 --master spark://$MASTER:7077
In this case each shell will use only 16 cores, so you can have two shells running on your 32 cores cluster. They can then run simultaneously but never use more than 16 cores each :(
This solution is far from ideal, I know. You depend on users to restrict themselves, to shut down their shells, and resources are wasted when a user is not running code. I have created a request to fix this on JIRA, which you can vote for.
The application ends when your shell dies. So, you cannot run concurrently two spark-shells on two laptops. What you can do is launch one spark-shell, launch the other, and have the second start when the first one dies.
Contrarily to spark-shell, spark-submit does terminate once computation is over. So you can spark-submit one app, launch a spark-shell, and have the shell take over the moment the application is done.
Or you can run two apps sequentially (one after the other) with two spark-submit launches.

Resources