auto scale spark cluster - apache-spark

I have a spark streaming job running on a cluster. Spark job pulls messages from Kafka and do the required processing before dumping the processed data to database. I have sized my cluster as per the current load. But this load requirement may go up/down in the future. I want to know the techniques to facilitate this auto scaling without restarting the job. Scaling becomes more complicated if kakfa is being used (as in my case) as I won't like the partitions to be moved around in stateful streaming. Currently the cluster is completely in house but I won't mind migrating to cloud if that assists the scaling use case.

it is not an answer. Just some notes
"in stateful streaming". What did you mean by that? All state in spark is distributed. And you should not rely on local system, as if some task failed, it can be send to any other executor.
do you speak about increasing size of cluster or resources dedicated for your spark job in cluster?
If the first one, you need to monitor each node (memory, cpu) and when it's time (hit some threshold) add more nodes.
If the second one: we didn't find nice solution. Spark provides 'autoscaling' feature, however it doesn't work properly with kafka streaming.

Related

Kubernetes Vs Spark Vs Spark on kubernetes

So I have a use case where I will stream about 1000 records per minute from kafka. I just need to dump these records in raw form in a no sql db or something like a data lake for that matter
I ran this through two approaches
Approach 1
——————————
Create kafka consumers in java and run them as three different containers in kubernetes. Since all the containers are in the same kafka consumer group, they would all contribute towards reading from same kafka topic and dump data into data lake. This works pretty quick for the volume of work load I have
Approach 2
——————————-
I then created a spark cluster and the same java logic to read from kafka and dump data in data lake
Observations
———————————-
Performance of kubernetes if not bad was equal to that of a spark job running in clustered mode.
So my question is, what is the real use case for using spark over kubernetes the way I am using it or even spark on kubernetes?
Is spark only going to rise and shine much much heavier work loads let’s say something of the order of 50,000 records per minute or cases where some real time processing needs to be done on the data before dumping it to the sink?
Spark has more cost associated to it so I need to make sure I use it only if it would scale better than kuberbetes solution
If your case is only to archive/snapshot/dump records I would recommend you to look into the Kafka Connect.
If you need to process the records you stream, eg. aggregate or join streams, then Spark comes into the game. Also for this case you may look into the Kafka Streams.
Each of these frameworks have its own tradeoffs and performance overheads, but in any case you save much development efforts using the tools made for that rather than developing your own consumers. Also these frameworks already support most of the failures handling, scaling, and configurable semantics. Also they have enough config options to tune the behaviour to most of the cases you can imagine. Just choose the available integration and you're good to go! And of course beware the open source bugs ;) .
Hope it helps.
Running kafka inside Kubernetes is only recommended when you have a lot of expertise doing it, as Kubernetes doesn't know it's hosting Spark, and Spark doesn't know its running inside Kubernetes you will need to double check for every feature you decide to run.
For your workload, I'd recommend sticking with Kubernetes. The elasticity, performance, monitoring tools and scheduling features plus the huge community support adds well on the long run.
Spark is a open source, scalable, massively parallel, in-memory execution engine for analytics applications so it will really spark when your load become more processing demand. It simply doesn't have much room to rise and shine if you are only dumping data, so keep It simple.

Separating Hive storage from Spark cluster (compute layer)

We have a scenario to use Storage capabilities of Hive (HDFS underneath) and Computing power of Spark cluster in the cloud environment. Is there a way that we can separate the two layers clearly.
Scenario:
Hive keeps getting data on regular basis (persistence layer). This
can't be deleted/removed at wish.
Processing the data sitting in Hive layer using Spark cluster at any
point. But we don't want to keep the cluster infrastructure in idle
state once computing is finished.
So, we are thinking of having cluster created in cloud just before the processing is needed and delete the spark cluster as soon as the processing is over. Advantage will be in saving cost of keeping the cluster resources .
If we load data onto Hive in one cluster of nodes, then can we read this data for processing in a spark cluster without doing data movement.
Assumption- the datanodes of Hadoop are not using a high end configuration and they are not suitable for doing spark in memory processing (low on CPUs; low on RAM).
Please suggest if this kind of scenario is possible in cloud infrastructure (GCP). Is there a better way to approach this.

Spark streaming + Kafka vs Just Kafka

Why and when one would choose to use Spark streaming with Kafka?
Suppose I have a system getting thousand messages per seconds through Kafka. I need to apply some real time analytics on these messages and store the result in a DB.
I have two options:
Create my own worker that reads messages from Kafka, run the analytics algorithm and store the result in DB. In a Docker era it is easy to scale this worker through my entire cluster with just scale command. I just need to make sure I have an equal or grater number of partitions than my workers and all is good and I have a true concurrency.
Create a Spark cluster with Kafka streaming input. Let the Spark cluster to do the analytics computations and then store the result.
Is there any case when the second option is a better choice? Sounds to me like it is just an extra overhead.
In a Docker era it is easy to scale this worker through my entire cluster
If you already have that infrastructure available, then great, use that. Bundle your Kafka libraries in some minimal container with health checks, and what not, and for the most part, that works fine. Adding a Kafka client dependency + a database dependency is all you really need, right?
If you're not using Spark, Flink, etc, you will need to handle Kafka errors, retries, offset and commit handling more closely to your code rather than letting the framework handle those for you.
I'll add in here that if you want Kafka + Database interactions, check out the Kafka Connect API. There's existing solutions for JDBC, Mongo, Couchbase, Cassandra, etc. already.
If you need more complete processing power, I'd go for Kafka Streams rather than needing to separately maintain a Spark cluster, and so that's "just Kafka"
Create a Spark cluster
Let's assume you don't want to maintain that, or rather you aren't able to pick between YARN, Mesos, Kubernetes, or Standalone. And if you are running the first three, it might be worth looking at running Docker on those anyway.
You're exactly right that it is extra overhead, so I find it's all up to what you have available (for example, an existing Hadoop / YARN cluster with idle memory resources), or what you're willing to support internally (or pay for vendor services, e g. Kafka & Databricks in some hosted solution).
Plus, Spark isn't running the latest Kafka client library (up until 2.4.0 updated to Kafka 2.0, I believe), so you'll need to determine if that's a selling point.
For actual streaming libraries, rather than Spark batches, Apache Beam or Flink would probably let you do the same types of workloads against Kafka
In general, in order to scale a producer / consumer, you need some form of resource scheduler. Installing Spark may not be difficult for some, but knowing how to use it efficiently and tune for appropriate resources can be

Spark on Mesos - running multiple Streaming jobs

I have 2 spark streaming jobs that I want to run, as well as keeping some available resources for batch jobs and other operations.
I evaluated Spark Standalone cluster manager, but I realized that I would have to fix the resources for two jobs, which would leave almost no computing power to batch jobs.
I started evaluating Mesos, because it has "fine grained" execution model, where resources are shifted between Spark applications.
1) Does it mean that a single core can be shifted between 2 streaming applications?
2) Although I have spark & cassandra, in order to exploit data locality, do I need to have dedicated core on each of the slave machines to avoid shuffling?
3) Would you recommend running Streaming jobs in "fine grained" or "course grained" mode. I know that logical answer is course grained (in order to minimize the latency of streaming apps) but what when resource in total cluster are limited (cluster of 3 nodes, 4 cores each - there are 2 streaming applications to run and multiple time to time batch jobs)
4) In Mesos, when I run spark streaming job in cluster mode, will it occupy 1 core permanently (like Standalone cluster manager is doing), or will that core execute driver process and sometimes act as executor?
Thank you
Fine grained mode is actually deprecated now. Even with it, each core is allocated to task until completion, but in Spark Streaming, each processing interval is a new job, so tasks only last as long the time it takes to process each interval's data. Hopefully that time is less than the interval time or your processing will back up, eventually running out of memory to store all those RDDs waiting for processing.
Note also that you'll need to have one core dedicated to each stream's Reader. Each will be pinned for the life of the stream! You'll need extra cores in case the stream ingestion needs to be restarted; Spark will try to use a different core. Plus you'll have a core tied up by your driver, if it's also running on the cluster (as opposed to on your laptop or something).
Still, Mesos is a good choice, because it will allocate the tasks to nodes that have capacity to run them. Your cluster sounds pretty small for what you're trying to do, unless the data streams are small themselves.
If you use the Datastax connector for Spark, it will try to keep input partitions local to the Spark tasks. However, I believe that connector assumes it will manage Spark itself, using Standalone mode. So, before you adopt Mesos, check to see if that's really all you need.

Data locality in Spark Streaming

Recently I've been doing performance tests on Spark Streaming. I ran a receiver on one of the 6 slaves and submitted a simple Word Count application to the cluster(actually I know this configuration is not proper in practice,just a simple test).I analyzed the scheduling log and found that nearly 88% of tasks are scheduled to the node where receiver ran on and the locality are always PROCESS_LOCAL and the CPU utilization is very high. Why does not Spark Streaming distribute data across the cluster and make full use of cluster? I've read official guide and it does not explain in detail, especially in Spark Streaming. Will it copy stream data to another node with free CPU and start new task on it when a task is on a node with busy CPU? If so, how can we explain the former case?
When you run the stream receiver just on one of the 6 nodes, all the received data are processed on this node (that is the data locality).
Data are not distributed across other nodes by default. If you need the input stream to be repartitioned (balanced across cluster) before further processing, you can use
inputStream.repartition(<number of partitions>)
This distributes the received batches of data across the specified number of machines in the cluster before further processing.
You can read more about level of parallelism in Spark documentation
https://spark.apache.org/docs/latest/streaming-programming-guide.html#performance-tuning

Resources