I have 2 dataframes each one having Array[String] as one of the columns. For each entry in one dataframe, I need to find out subsets, if any, in the other dataframe. An example is here:
DF1:
----------------------------------------------------
id : Long | labels : Array[String]
---------------------------------------------------
10 | [label1, label2, label3]
11 | [label4, label5]
12 | [label6, label7]
DF2:
----------------------------------------------------
item : String | labels : Array[String]
---------------------------------------------------
item1 | [label1, label2, label3, label4, label5]
item2 | [label4, label5]
item3 | [label4, label5, label6, label7]
After the subset operation I described, the expected o/p should be
DF3:
----------------------------------------------------
item : String | id : Long
---------------------------------------------------
item1 | [10, 11]
item2 | [11]
item3 | [11, 12]
It is guaranteed that the DF2, will always have corresponding subsets in DF1, so there won't be any left over elements.
Can someone please help with the right approach here ? It looks like for each element in DF2, I need to scan DF1 and do subset operation (or set subtraction) on the 2nd column until I find all the subsets and exhaust the labels in that row and while doing that accumulate the list of "id" fields. How do I do this in compact and efficient manner ? Any help is greatly appreciated. Realistically, I may have 100s of elements in DF1 and 1000s of elements in DF2.
I'm not aware of any way to perform this kind of operation in an efficient way. However, here is one possible solution using UDF as well as Cartesian join.
The UDF takes two sequences and checks if all strings in the first exists in the second:
val matchLabel = udf((array1: Seq[String], array2: Seq[String]) => {
array1.forall{x => array2.contains(x)}
})
To use Cartesian join, it needs to be enabled as it is computationally expensive.
val spark = SparkSession.builder.getOrCreate()
spark.conf.set("spark.sql.crossJoin.enabled", true)
The two dataframes are joined together utilizing the UDF. Afterwards the resulting dataframe is grouped by the item column to collect a list of all ids. Using the same DF1 and DF2 as in the question:
val DF3 = DF2.join(DF1, matchLabel(DF1("labels"), DF2("labels")))
.groupBy("item")
.agg(collect_list("id").as("id"))
The result is as follows:
+-----+--------+
| item| id|
+-----+--------+
|item3|[11, 12]|
|item2| [11]|
|item1|[10, 11]|
+-----+--------+
Related
I have a spark dataframe containing businesses with their contact numbers in 2 columns, however some of my businesses are repeated with different contact info, for example:
Name:
Phone:
bus1
082...
bus1
087...
bus2
076...
bus3
081...
bus3
084...
bus3
086...
I want to have 3 lines, 1 for each business with varying phone numbers in each, for example:
Name:
Phone1:
Phone2:
Phone3:
bus1
082...
087...
bus2
076...
bus3
081...
084...
086...
I have tried using select('Name','Phone').distinct(), but I don't know how to pivot it to a single row matching on the 'Name' column... please help
First construct the phone array based on name, and then split the array into multiple columns.
df = df.groupBy('Name').agg(F.collect_list('Phone').alias('Phone'))
df = df.select('Name', *[F.col('Phone')[i].alias(f'Phone{str(i+1)}') for i in range(3)])
df.show(truncate=False)
Try something as below -
Input DataFrame
df = spark.createDataFrame([('bus1', '082...'), ('bus1', '087...'), ('bus2', '076...'), ('bus3', '081...'),('bus3', '084...'),('bus3', '086...')], schema=["Name", "Phone"])
df.show()
+----+------+
|Name| Phone|
+----+------+
|bus1|082...|
|bus1|087...|
|bus2|076...|
|bus3|081...|
|bus3|084...|
|bus3|086...|
+----+------+
Collecting all the Phone values into an array using collect_list
from pyspark.sql.functions import *
from pyspark.sql.types import *
df1 = df.groupBy("Name").agg(collect_list(col("Phone")).alias("Phone")).select( "Name", "Phone")
df1.show(truncate=False)
+----+------------------------+
|Name|Phone |
+----+------------------------+
|bus1|[082..., 087...] |
|bus2|[076...] |
|bus3|[081..., 084..., 086...]|
+----+------------------------+
Splitting Phone into multiple columns
df1.select(['Name'] + [df1.Phone[x].alias(f"Phone{x+1}") for x in range(0,3)]).show(truncate=False)
+----+------+------+------+
|Name|Phone1|Phone2|Phone3|
+----+------+------+------+
|bus1|082...|087...|null |
|bus2|076...|null |null |
|bus3|081...|084...|086...|
+----+------+------+------+
I'd like to create a new column that is a JSON representation of some other columns. key, value pairs in a list.
Source:
origin
destination
count
toronto
ottawa
5
montreal
vancouver
10
What I want:
origin
destination
count
json
toronto
ottawa
5
[{"origin":"toronto"},{"destination","ottawa"}, {"count": "5"}]
montreal
vancouver
10
[{"origin":"montreal"},{"destination","vancouver"}, {"count": "10"}]
(everything can be a string, doesn't matter).
I've tried something like:
df.withColumn('json', to_json(struct(col('origin'), col('destination'), col('count'))))
But it creates the column with all the key:value pairs in one object:
{"origin":"United States","destination":"Romania"}
Is this possible without a UDF?
A way to hack around this:
import pyspark.sql.functions as F
df2 = df.withColumn(
'json',
F.array(
F.to_json(F.struct('origin')),
F.to_json(F.struct('destination')),
F.to_json(F.struct('count'))
).cast('string')
)
df2.show(truncate=False)
+--------+-----------+-----+--------------------------------------------------------------------+
|origin |destination|count|json |
+--------+-----------+-----+--------------------------------------------------------------------+
|toronto |ottawa |5 |[{"origin":"toronto"}, {"destination":"ottawa"}, {"count":"5"}] |
|montreal|vancouver |10 |[{"origin":"montreal"}, {"destination":"vancouver"}, {"count":"10"}]|
+--------+-----------+-----+--------------------------------------------------------------------+
Another way by creating array of maps column before calling to_json:
from pyspark.sql import functions as F
df1 = df.withColumn(
'json',
F.to_json(F.array(*[F.create_map(F.lit(c), F.col(c)) for c in df.columns]))
)
df1.show(truncate=False)
#+--------+-----------+-----+------------------------------------------------------------------+
#|origin |destination|count|json |
#+--------+-----------+-----+------------------------------------------------------------------+
#|toronto |ottawa |5 |[{"origin":"toronto"},{"destination":"ottawa"},{"count":"5"}] |
#|montreal|vancouver |10 |[{"origin":"montreal"},{"destination":"vancouver"},{"count":"10"}]|
#+--------+-----------+-----+------------------------------------------------------------------+
I have the following Spark dataframe that is created dynamically
| name| number |
+--------+---------+
| Andy | (20,10,30)|
|Berta | (30,40,20)|
| Joe | (40,90,60)|
+-------+---------+
Now, I need to iterate each row and column in Spark to print the following output, How to do this?
Andy 20
Andy 10
Andy 30
Berta 30
Berta 40
Berta 20
Joe 40
Joe 90
Joe 60
Assuming the number column is of string Data Type, you can achieve the desired results by following below steps.
Original Data Frame:
val df = Seq(("Andy", "20,10,30"), ("Berta", "30,40,20"), ("Joe", "40,90,60"))
.toDF("name", "number")
Then Create an intermediate Data Frame having 3 number columns by splitting the number column with comma.
val Interim_Df = df.withColumn("n1", split(col("number"), ",").getItem(0))
.withColumn("n2", split(col("number"), ",").getItem(1))
.withColumn("n3", split(col("number"), ",").getItem(2))
.drop("number")
Then generate the final result data frame by doing union with oneIndexDfs.
val columnIndexes = Seq(1, 2, 3)
val onlyOneIndexDfs = columnIndexes.map(x =>
Interim_Df.select(
$"name",
col(s"n$x").alias("number")))
val resultDF = onlyOneIndexDfs.reduce(_ union _)
You need explode function.
Here samples of its usage.
I'm trying to join data from these two datasets, based on the common "stock" key
stock, sector
GOOG Tech
stock, date, volume
GOOG 2015 5759725
The join method should join these together, however the resulting RDD I got is of the form:
GOOG, (Tech, 2015)
I'm trying to obtain:
(Tech, 2015) 5759726
Additionally, how do I go about reducing the results by the keys (e.g. (Tech, 2015)) in order to obtain a numerical summation for each sector and year?
from pyspark.sql.functions import struct, col, sum
#sample data
df1 = sc.parallelize([['GOOG', 'Tech'],
['AAPL', 'Tech'],
['XOM', 'Oil']]).toDF(["stock","sector"])
df2 = sc.parallelize([['GOOG', '2015', '5759725'],
['AAPL', '2015', '123'],
['XOM', '2015', '234'],
['XOM', '2016', '789']]).toDF(["stock","date","volume"])
#final output
df = df1.join(df2, ['stock'], 'inner').\
withColumn('sector_year', struct(col('sector'), col('date'))).\
drop('stock','sector','date')
df.show()
#numerical summation for each sector and year
df.groupBy('sector_year').agg(sum('volume')).show()
Output is:
+-------+-----------+
| volume|sector_year|
+-------+-----------+
| 123|[Tech,2015]|
| 234| [Oil,2015]|
| 789| [Oil,2016]|
|5759725|[Tech,2015]|
+-------+-----------+
+-----------+-----------+
|sector_year|sum(volume)|
+-----------+-----------+
|[Tech,2015]| 5759848.0|
| [Oil,2015]| 234.0|
| [Oil,2016]| 789.0|
+-----------+-----------+
I have a PySpark Dataframe input_dataframe as shown below:
**cust_id** **source_id** **value**
10 11 test_value
10 12 test_value2
i have another dataframe delta_dataframe which have updated records from input_dataframe and some new records as shown below:
**cust_id** **source_id** **value**
10 11 update_value
10 15 new_value2
In Both dataframe, primary key is combination of cust_id and source_id.
I have to generate a new dataframe output_dataframe, which will have records from input_dataframe with updated records from delta_dataframe, so my final dataframe is as below:
**cust_id** **source_id** **value**
10 11 update_value
10 12 test_value2
10 15 new_value2
Can someone please suggest me, how can i achieve it in PySpark. Any help will be appreciated on this.
Subtract the two dataframes based on primary key. Make inner join of output with input_dataframe. Then take Uion of it with Delta_dataframe. You will get proper output.
You need to join input_dataframe and delta_dataframe using join on two columns
output_df = input_df.join(delta_df, input_df['cust_id'] = delta_df['cust_id'] & input_df['source_id'] = delta_df['source_id'], 'left_outer')
And then select only the required fields from output_df
We can use Outer join and select the required dataframe value,
>>> input_dataframe.join(delta_dataframe,['custid','sourceid'],'outer').select('custid','sourceid',F.coalesce(delta_dataframe['value'],input_dataframe['value']).alias('value')).show()
+------+--------+-------------+
|custid|sourceid| value|
+------+--------+-------------+
| 10| 15| new_value2|
| 10| 11|updated_value|
| 10| 12| test_value2|
+------+--------+-------------+