Cassandra Materialized View Creation Speedup - cassandra

I'm trying to create a Materialized-View on an existing cassandra table with 1200K+ records.
Its been a couple of hours since i executed the query for view creation, but still I find the row count to be 0 in the view.
I have already tried nodetool flush keyspace-name.
Is there a way to find out where it is stuck? or what is the progress?
Is there any way to speed this up?

Related

Cassandra query table without partition key

I am trying to extract data from a table as part of a migration job.
The schema is as follows:
CREATE TABLE IF NOT EXISTS ${keyspace}.entries (
username text,
entry_type int,
entry_id text,
PRIMARY KEY ((username, entry_type), entry_id)
);
In order to query the table we need the partition keys, the first part of the primary key.
Hence, if we know the username and the entry_type, we can query the table.
In this case the username can be whatever, but the entry_type is an integer in the range 0-9.
When doning the extraction we iterate the table 10 times for every username to make sure we try all versions of entry_type.
We can no longer find any entries as we have depleted our list of usernames. But our nodetool tablestats report that there is still data left in the table, gigabytes even. Hence we assume the table is not empty.
But I cannot find a way to inspect the table to figure out what usernames remains in the table. If I could inspect it I could add the usernames left in the table to our extraction job and eventually we could deplete the table. But I cannot simply query the table as such:
SELECT * FROM ${keyspace}.entries LIMIT 1
as cassandra requires the partition keys to make meaningful queries.
What can I do to figure out what is left in our table?
As per the comment, the migration process includes a DELETE operation from the Cassandra table, but the engine will have a delay before actually removing from disk the affected records; this process is controlled internally with tombstones and the gc_grace_seconds attribute of the table. The reason for this delay is fully explained in this blog entry, for a tl dr, if the default value is still in place, Cassandra will need to pass at least 10 days (864,000 seconds) from the execution of the delete before the actual removal of the data.
For your case, one way to proceed is:
Ensure that all your nodes are "Up" and "Healthy" (UN)
Decrease the gc_grace_seconds attribute of your table, in the example, it will set it to 1 minute, while the default is
ALTER TABLE .entries with GC_GRACE_SECONDS = 60;
Manually compact the table:
nodetool compact entries
Once that the process is completed, nodetool tablestats should be up to date
To answer your first question, I would like to put more light on gc_grace_seconds property.
In Cassandra, data isn’t deleted in the same way it is in RDBMSs. Cassandra is designed for high write throughput, and avoids reads-before-writes. So in Cassandra, a delete is actually an update, and updates are actually inserts. A “tombstone” marker is written to indicate that the data is now (logically) deleted (also known as soft delete). Records marked tombstoned must be removed to claim back the storage space. Which is done by a process called Compaction. But remember that tombstones are eligible for physical deletion / garbage collection only after a specific number of seconds known as gc_grace_seconds. This is a very good blog to read more in detail : https://thelastpickle.com/blog/2016/07/27/about-deletes-and-tombstones.html
Now possibly you are looking into table size before gc_grace_seconds and data is still there.
Coming to your second issue where you want to fetch some samples from the table without providing partition keys. You can analyze your table content using Spark. The Spark Cassandra Connector allows you to create Java applications that use Spark to analyze database data. You can follow the articles / documentation to write a quick handy spark application to analyze Cassandra data.
https://www.instaclustr.com/support/documentation/cassandra-add-ons/apache-spark/using-spark-to-sample-data-from-one-cassandra-cluster-and-write-to-another/
https://docs.datastax.com/en/dse/6.0/dse-dev/datastax_enterprise/spark/sparkJavaApi.html
I would recommend not to delete records while you do the migration. Rather first complete the migration and post that do a quick validation / verification to ensure all records are migrated successfully (this use can easily do using Spark buy comparing dataframes from old and new tables). Post successful verification truncate the old table as truncate does not create tombstones and hence more efficient. Note that huge no of tombstone is not good for cluster health.

Materialized View Cassandra: Does the view still get updated if base table changes during population time?

I have a table which is relatively big. I want to create a Materialized View in Cassandra. While the view is being populated, if the base table gets updated, will the view also get updated with those changes? How does it work? Because in order to execute a batchlog on the view, the partition on the base table will be locked, therefore it cannot wait until the population has finished.
In my case, i will perform only inserts or deletes on the base table which simplifies things, I guess. But what if I would also perform updates? Would cassandra check the timestamps to detect somehow which value is most recent?

High CPU Usage in Cassandra 2.0

Running a 4 node cluster cassandra version 2.0.9. Recently since a
month we are seeing a huge spike in the CPU usage on all the nodes.
tpstats gives me high Native-transport-requests. Attaching screenshot
for 3 nodes tpstats
Node 1
Node 2
Node 3
From where should I start debugging?
Also if you see from first picture when the load becomes high the read
and write becomes low . This is understandable as the majority of the
requests drop
How to mitigate tombstones? I probably get that question from our dev teams a dozen times per month. The easiest way, is to not do DELETEs, and I'm dead serious about that. Otherwise, you can model your tables in such a way to mitigate tombstones in a better way.
For example, let's say I have a simple table to keep track of order status. As an order can have several different statuses (pending, picking, shipped, received, returned, etc...) a lazy way is to have one row per order, and either DELETE or run an in-place update to change the status (depending on whether or not status is a part of your key). A better way, is to convert it to a time series and perform deletes via a TTL. The table would look something like this:
CREATE TABLE orderStatus (orderid UUID,
updateTime TIMEUUID,
status TEXT,
PRIMARY KEY (ordered, status))
with CLUSTERING ORDER BY (updateTime DESC);
Let's say I know that I really only care about order status for a max of 30 days, so all status upserts have a TTL of 30 days...
INSERT INTO orderStatus (orderid,updateTime,status)
VALUES (UUID(),now(),'pending') USING TTL 2592000;
That table will support queries for order status by orderid, sorted by the update time descending. That way, I can SELECT from that table for an id with a LIMIT 1, and always get the most recent status. Additionally, those statuses will get deleted automatically after 30 days. Now, TTLing data still creates tombstones. But those tombstones are separate from the newer orders (the ones I probably care about more), so I typically don't have to worry about those tombstones interfering in my queries (because they're all grouped in partitions that I won't be querying often).
That's one example, but I hope the idea behind modeling for tombstone mitigation is clear. Mainly, the idea is to partition your table in such a way that the tombstones are kept separate from the data that you query most-often.
Is there a way by which we can monitor which queries are running slow on the server?
No, there really isn't a way to do that. But, you should be able to request all queries from your developers for problem keyspaces/tables. And that should be easy, because a table should really only be able to support one or two queries. If your developers built a table that supports 5 or 6 different queries, they're doing it wrong.
When you look at the queries, these are some red flags you should question:
Unbound queries (SELECTs without WHERE clauses).
Queries with ALLOW FILTERING.
Use of secondary indexes.
Use of IN.
Use of BATCH statements (I have seen a batch statement tip-over a node before).

Require help in creating design for cassandra data model for my requirement

I have a Job_Status table with 3 columns:
Job_ID (numeric)
Job_Time (datetime)
Machine_ID (numeric)
Other few fields containing stats (like memory, CPU utilization)
At a regular interval (say 1 min), entries are inserted in the above table for the Jobs running on each Machines.
I want to design the data model in Cassandra.
My requirement is to get list (pair) of jobs which are running at the same time on 2 or more than 2 machines.
I have created table with Job_Id and Job_Time as primary key for row but in order to achieve the desired result I have to do lots of parsing of data after retrieval of records.
Which is taking a lot of time when the number of records reach around 500 thousand.
This requirement expects the operation like inner join of SQL, but I can’t use SQL due to some business reasons and also SQL query with such huge data set is also taking lots of time as I tried that with dummy data in SQL Server.
So I require your help on below points:
Kindly suggest some efficient data model in Cassandra for this requirement.
How the join operation of SQL can be achieved/implemented in Cassandra database?
Kindly suggest some alternate design/algorithm. I am stuck at this problem for a very long time.
That's a pretty broad question. As a general approach you might want to look at pairing Cassandra with Spark so that you could do the large join in parallel.
You would insert jobs into your table when they start and delete them when they complete (possibly with a TTL set on insert so that jobs that don't get deleted will auto delete after some time).
When you wanted to update your pairing of jobs, you'd run a spark batch job that would load the table data into an RDD, and then do a map/reduce operation on the data, or use spark SQL to do a SQL style join. You'd probably then write the resulting RDD back to a Cassandra table.

Cassandra multi row selection

Somewhere I have heard that using multi row selection in cassandra is bad because for each row selection it runs new query, so for example if i want to fetch 1000 rows at once it would be the same as running 1000 separate queries at once, is that true?
And if it is how bad would it be to keep selecting around 50 rows each time page is loaded if say i have 1000 page views in a single minute, would it severely slow cassandra down or not?
P.S I'm using PHPCassa for my project
Yes, running a query for 1000 rows is the same as running 1000 queries (if you use the recommended RandomPartitioner). However, I wouldn't be overly concerned by this. In Cassandra, querying for a row by its key is a very common, very fast operation.
As to your second question, it's difficult to tell ahead of time. Build it and test it. Note that Cassandra does use in memory caching so if you are querying the same rows then they will cache.
We are using Playorm for Cassandra and there is a "findAll" pattern there which provides support to fetch all rows quickly. Visit
https://github.com/deanhiller/playorm/wiki/Support-for-retrieving-many-entities-in-parallel for more details.
1) I have little bit debugged the Cassandra code base and as per my observation to query multiple rows at the same time cassandra has provided the multiget() functionality which is also inherited in phpcassa.
2) Multiget is optimized to to handle the batch request and it saves your network hop.(like for 1k rows there will be 1k round trips, so it definitely reduces the time for 999 round trips)
3) More about multiget() in phpcassa: php cassa multiget()

Resources