Catching thrown Enum Values - haxe

Haxe permits the throwing of pretty much anything, but seems to be a bit limited in its catching ability. For example, I have a static error function that throws values of an ErrorType enum:
class Error
{
public static var CATCH_ALL:Bool = false;
public static function Throw(aError:ErrorType, ?ignore:Bool=false, ?inf:PosInfos):Void
{
trace('Error: $aError at ' + inf.className + ':' + inf.methodName + ':' + inf.lineNumber);
if (!CATCH_ALL && !ignore)
{
throw aError;
}
}
}
enum ErrorType
{
NULL_PARAM(msg:String);
NOT_FOUND(msg:String);
}
While I can catch pretty much anything, I am limited to basic types, class types and enum types. This means that I can catch every string, but not specifically a string containing "potato", for example. If I create multiple error classes, I can catch a specific class type while ignoring the others, but the same thing seems not to be possible with enum. Would there be an alternative to the following code that would compile?
try
{
Error.Throw(ErrorType.NULL_PARAM('Potato'));
}
catch (e:ErrorType.NULL_PARAM) trace(e); //does not work nor compile
catch (e:ErrorType) trace(e); //works, but catches every error

Selection of catch-expressions is limited to types / doesn't provide pattern matching capabilities like switch does:
Catch blocks are checked from top to bottom with the first one whose type is compatible with the thrown value being picked.
All values of the ErrorType enum are compatible with the ErrorType type. This means that unfortunately, I think the best you can do is to catch ErrorType and then do the selection inside the catch-block, using a switch and potentially re-throwing it. However, note that a simple throw e would currently cause the stack trace to be lost as discussed in #4159.

Related

TS: Cannot invoke an expression whose type lacks a call signature when defined dynamically, but it works

I'm still quite new to typescript, so please be gentle with me if I'm doing something with no sense for this technology!
The problem that I'm trying to solve is having a dynamic way to define how my application errors should be structured, but leaving to the users the faculty to enrich the messages.
So I tried to create this logic in a module that could be extended easily from the application, but I'm currently facing the problem:
Error:(35, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
What I thought it was a good idea (but please tell me if I'm wrong), was to use a register and a map to have the possibility to extend this mapping every time I want. So I created my ErrorMessage interface to be like the following:
export interface ErrorMessage {
actionMessage: string;
actionSubject: string;
originalErrorMessage?: string;
toString: () => string;
}
and a register for these, called ErrorResponseRegister, as it follows:
export enum defaultErrors {
ExceptionA = 'ExceptionA',
ExceptionB = 'ExceptionB',
}
export class ErrorResponseRegister {
private mapping: Map<string, ErrorMessage>;
constructor() {
this.mapping = new Map()
.set(defaultErrors.ExceptionA, exceptionAErrorMessage)
.set(defaultErrors.ExceptionB, exceptionBErrorMessage);
}
}
So at the end, every ErrorMessage function should look like:
export function exceptionAErrorMessage(originalErrorMessage?: string): ErrorMessage {
return {
enrichment1: "Something happened",
enrichment2: "in the application core",
originalErrorMessage: originalErrorMessage,
toString(): string {
return `${this.enrichment1} ${this.enrichment2}. Original error message: ${originalErrorMessage}`;
},
};
}
Please note I haven't used classes for this ones, as it doesn't really need to be instantiated
and I can have a bunch of them where the toString() method can vary. I just want to enforce the errors should have an enrichment1 and enrichment2 that highlight the problem in a better way for not-technical people.
So, now, back to code. When I'm trying to use the exceptionAErrorMessage statically, I can't see any problem:
console.log(exceptionAErrorMessage(originalErrorMessage).toString())
But when I try dynamically, using the map defined in the ErrorResponseRegister, something weird happens:
// In ErrorResponseRegister
public buildFor(errorType: string, originalErrorMessage?: string): Error {
const errorMessageBuilder = this.mapping.get(errorType);
if (errorMessageBuilder) {
return errorMessageBuilder(originalErrorMessage).toString();
}
return "undefined - do something else";
}
The code works as expected, the error returned is in the right format, so the toString function is executed correctly.
BUT, the following error appears in the IDE:
Error:(32, 18) TS2349: Cannot invoke an expression whose type lacks a call signature. Type 'ErrorMessage' has no compatible call signatures.
The line that causes the problem is
errorMessageBuilder(originalPosErrorMessage).toString()
Can someone help me to understand what I'm doing wrong?
It looks like your problem is you've mistyped mapping... it doesn't hold ErrorMessage values; it holds (x?: string)=>ErrorMessage values:
private mapping: Map<string, (x?: string) => ErrorMessage>;
What's unfortunate is that you initialize this variable via new Map().set(...) instead of the using an iterable constructor argument.
The former returns a Map<any, any> which is trivially assignable to mapping despite the mistyping. That is, you ran smack into this known issue where the standard library's typings for the no-argument Map constructor signature produces Map<any, any> which suppresses all kinds of otherwise useful error messages. Perhaps that will be fixed one day, but for now I'd suggest instead that you use the iterable constructor argument, whose type signature declaration will infer reasonable types for the keys/values:
constructor() {
this.mapping = new Map([
[defaultErrors.ExceptionA, exceptionAErrorMessage],
[defaultErrors.ExceptionB, exceptionBErrorMessage]
]); // inferred as Map<defaultErrors, (orig?: string)=>ErrorMessage>
}
If you had done so, it would have flagged the assignment as an error with your original typing for mapping (e.g., Type 'Map<defaultErrors, (originalErrorMessage?: string | undefined) => ErrorMessage>' is not assignable to type 'Map<string, ErrorMessage>'.) Oh well!
Once you make those changes, things should behave more reasonably for you. Hope that helps; good luck!
Link to code

The test failure message for mockito verify

For a parameter class
class Criteria {
private Map params;
public getMap(){ return params; }
}
and a service method accept this criteria
class Service{
public List<Person> query(Criteria criteria){ ... }
}
A custom featureMatcher is used to match the criteria key
private Matcher<Criteria> hasCriteria(final String key, final Matcher<?> valueMatcher){
return new FeatureMatcher<Criteria, Object>((Matcher<? super Object>)valueMatcher, key, key){
#Override protected Object featureValueOf(Criteria actual){
return actual.getMap().get(key);
}
}
}
when using mockito to veryify the arguments:
verify(Service).query((Criteria) argThat("id", hasCriteria("id", equalTo(new Long(12)))));
The error message shows that:
Argument(s) are different! Wanted:
Service.query(
id <12L>
);
-> at app.TestTarget.test_id (TestTarget.java:134)
Actual invocation has different arguments:
Service.query(
app.Criteria#509f5011
);
If I use ArugmentCaptor,
ArgumentCaptor<Criteria> argument = ArgumentCaptor.forClass(Criteria.class);
verify(Service).query(argument.capture());
assertThat(argument.getValue(), hasCriteria("id", equalTo(new Long(12))));
The message is much better:
Expected: id <12L> but id was <2L>
How can I get such message, without using ArgumentCaptor?
The short answer is to adjust the Criteria code, if it's under your control, to write a better toString method. Otherwise, you may be better off using the ArgumentCaptor method.
Why is it hard to do without ArgumentCaptor? You know you're expecting one call, but Mockito was designed to handle it even if you have a dozen similar calls to evaluate. Even though you're using the same matcher implementation, with the same helpful describeMismatch implementation, assertThat inherently tries once to match where verify sees a mismatch and keeps trying to match any other call.
Consider this:
// in code:
dependency.call(true, false);
dependency.call(false, true);
dependency.call(false, false);
// in test:
verify(mockDependency).call(
argThat(is(equalTo(true))),
argThat(is(equalTo(true))));
Here, Mockito wouldn't know which of the calls was supposed to be call(true, true); any of the three might have been it. Instead, it only knows that there was a verification you were expecting that was never satisfied, and that one of three related calls might have been close. In your code with ArgumentCaptor, you can use your knowledge that there's only one call, and provide a more-sane error message; for Mockito, the best it can do is to output all the calls it DID receive, and without a helpful toString output for your Criteria, that's not very helpful at all.

How to collect errors during run time given by a parser in Antlr4

I have upgraded from Antlr 3 to Antlr 4. I was using this code to catch exceptions using this code. But this is not working for Antlr 4.
partial class XParser
{
public override void ReportError(RecognitionException e)
{
base.ReportError(e);
Console.WriteLine("Error in Parser at line " + ":" + e.OffendingToken.Column + e.OffendingToken.Line + e.Message);
}
}
This is the error that appears
'Parser.ReportError(Antlr4.Runtime.RecognitionException)': no suitable method found to override
In Antlr 4 what is the expected way of accumulating errors that occurs in the input stream. I was unable to find a way to achieve this on the net. Please provide me some guidelines.
EDIT:
I have implemented the XParser as below
partial class XParser : IAntlrErrorListener<IToken>
{
public void SyntaxError(IRecognizer recognizer, IToken offendingSymbol, int line, int charPositionInLine, string msg, RecognitionException e)
{
Console.WriteLine("Error in parser at line " + ":" + e.OffendingToken.Column + e.OffendingToken.Line + e.Message);
}
}
As you said I can extend this parser class using any of the mentioned classes. But I was unable to register this listener, in the main program I am confused with passing argument as the listener. Please help me with the registering.
As I can see these classes has the capability of producing more meaningful error messages don't they?
You need to implement IAntlrErrorListener<IToken>. If all you want to is report errors like you have above, then you should focus on the SyntaxError method. Several base classes are available if you want to extend one.
ConsoleErrorListener
BaseErrorListener
DiagnosticErrorListener
The error listener is attached to the parser instance by calling parser.AddErrorListener(listener).
Edit: You need to create a new class which implements the error listener interface. You then attach the listener to the parser. The parser itself will not implement the error listener interface.

System.Linq.Dynamic .Select("new ...") does not appear to be thread safe

I grabbed System.Linq.Dynamic.DynamicQueryable from here:
http://weblogs.asp.net/scottgu/archive/2008/01/07/dynamic-linq-part-1-using-the-linq-dynamic-query-library.aspx
The issue that I am running into is in code that looks like this:
var results = dataContext.GetTable<MyClass>.Select("new (MyClassID, Name, Description)").Take(5);
It appears that if that line of code is executed by multiple threads near simultaneously, Microsoft's dynamic Linq code crashes in their ClassFactory.GetDynamicClass() method, which looks like this:
public Type GetDynamicClass(IEnumerable<DynamicProperty> properties)
{
rwLock.AcquireReaderLock(Timeout.Infinite);
try
{
Signature signature = new Signature(properties);
Type type;
if (!classes.TryGetValue(signature, out type))
{
type = CreateDynamicClass(signature.properties);
classes.Add(signature, type); // <-- crashes over here!
}
return type;
}
finally
{
rwLock.ReleaseReaderLock();
}
}
The crash is a simple dictionary error: "An item with the same key has already been added."
In Ms code, The rwLock variable is a ReadWriterLock class, but it does nothing to block multiple threads from getting inside classes.TryGetValue() if statement, so clearly, the Add will fail.
I can replicate this error pretty easily in any code that creates a two or more threads that try to execute the Select("new") statement.
Anyways, I'm wondering if anyone else has run into this issue, and if there are fixes or workarounds I can implement.
Thanks.
I did the following (requires .NET 4 or later to use System.Collections.Concurrent):
changed the classes field to a ConcurrentDictionary<Signature, Type> ,
removed all the ReaderWriterLock rwLock field and all the code referring to it,
updated GetDynamicClass to:
public Type GetDynamicClass(IEnumerable<DynamicProperty> properties) {
var signature = new Signature(properties);
return classes.GetOrAdd(signature, sig => CreateDynamicClass(sig.properties));
}
removed the classCount field and updated CreateDynamicClass to use classes.Count instead:
Type CreateDynamicClass(DynamicProperty[] properties) {
string typeName = "DynamicClass" + Guid.NewGuid().ToString("N");
...

Best pattern for simulating "continue" in Groovy closure

It seems that Groovy does not support break and continue from within a closure. What is the best way to simulate this?
revs.eachLine { line ->
if (line ==~ /-{28}/) {
// continue to next line...
}
}
You can only support continue cleanly, not break. Especially with stuff like eachLine and each. The inability to support break has to do with how those methods are evaluated, there is no consideration taken for not finishing the loop that can be communicated to the method. Here's how to support continue --
Best approach (assuming you don't need the resulting value).
revs.eachLine { line ->
if (line ==~ /-{28}/) {
return // returns from the closure
}
}
If your sample really is that simple, this is good for readability.
revs.eachLine { line ->
if (!(line ==~ /-{28}/)) {
// do what you would normally do
}
}
another option, simulates what a continue would normally do at a bytecode level.
revs.eachLine { line ->
while (true) {
if (line ==~ /-{28}/) {
break
}
// rest of normal code
break
}
}
One possible way to support break is via exceptions:
try {
revs.eachLine { line ->
if (line ==~ /-{28}/) {
throw new Exception("Break")
}
}
} catch (Exception e) { } // just drop the exception
You may want to use a custom exception type to avoid masking other real exceptions, especially if you have other processing going on in that class that could throw real exceptions, like NumberFormatExceptions or IOExceptions.
Closures cannot break or continue because they are not loop/iteration constructs. Instead they are tools used to process/interpret/handle iterative logic. You can ignore given iterations by simply returning from the closure without processing as in:
revs.eachLine { line ->
if (line ==~ /-{28}/) {
return
}
}
Break support does not happen at the closure level but instead is implied by the semantics of the method call accepted the closure. In short that means instead of calling "each" on something like a collection which is intended to process the entire collection you should call find which will process until a certain condition is met. Most (all?) times you feel the need to break from a closure what you really want to do is find a specific condition during your iteration which makes the find method match not only your logical needs but also your intention. Sadly some of the API lack support for a find method... File for example. It's possible that all the time spent arguing wether the language should include break/continue could have been well spent adding the find method to these neglected areas. Something like firstDirMatching(Closure c) or findLineMatching(Closure c) would go a long way and answer 99+% of the "why can't I break from...?" questions that pop up in the mailing lists. That said, it is trivial to add these methods yourself via MetaClass or Categories.
class FileSupport {
public static String findLineMatching(File f, Closure c) {
f.withInputStream {
def r = new BufferedReader(new InputStreamReader(it))
for(def l = r.readLine(); null!=l; l = r.readLine())
if(c.call(l)) return l
return null
}
}
}
using(FileSupport) { new File("/home/me/some.txt").findLineMatching { line ==~ /-{28}/ }
Other hacks involving exceptions and other magic may work but introduce extra overhead in some situations and convolute the readability in others. The true answer is to look at your code and ask if you are truly iterating or searching instead.
If you pre-create a static Exception object in Java and then throw the (static) exception from inside a closure, the run-time cost is minimal. The real cost is incurred in creating the exception, not in throwing it. According to Martin Odersky (inventor of Scala), many JVMs can actually optimize throw instructions to single jumps.
This can be used to simulate a break:
final static BREAK = new Exception();
//...
try {
... { throw BREAK; }
} catch (Exception ex) { /* ignored */ }
Use return to continue and any closure to break.
Example
File content:
1
2
----------------------------
3
4
5
Groovy code:
new FileReader('myfile.txt').any { line ->
if (line =~ /-+/)
return // continue
println line
if (line == "3")
true // break
}
Output:
1
2
3
In this case, you should probably think of the find() method. It stops after the first time the closure passed to it return true.
With rx-java you can transform an iterable in to an observable.
Then you can replace continue with a filter and break with takeWhile
Here is an example:
import rx.Observable
Observable.from(1..100000000000000000)
.filter { it % 2 != 1}
.takeWhile { it<10 }
.forEach {println it}

Resources