Some questions about Thread Pool in Vert.x? - multithreading

Vert.x have many thread pool, eventLoopGroup,acceptorEventLoopGroup,internalBlockingPool,workerPool.
Why need so many?
FileSystem read file will use internalBlockingPool, but like this code executeBlocking will use workerPool.
And in this code why resultHandler execute in eventLoop thread not
workpool?
vertx.executeBlocking(future -> {
System.out.println(Thread.currentThread().getName());
future.complete();
}, r -> {
System.out.println(Thread.currentThread().getName());
});
In my understanding eventloop just a single thread is endless loop for channel.If nothing to do with network, no need to use eventLoopGroup.
how to understand event in Vert.x, can give some Vert.x code not netty code?

Event loops: there can be more than one event loop thread. There typically will be more than one event loop thread (it depends on your number of cores). For example,if you start N instances of a verticle, you will want it to spread across multiple cores using multiple event loops. In the docs, look up the multi-reactor pattern.
Vert.x works differently here. Instead of a single event loop, each
Vertx instance maintains several event loops. By default we choose the
number based on the number of available cores on the machine, but this
can be overridden.
http://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
Regarding your question about the result handler: The execute blocking function will run on a worker thread, but once it is all done, it will be pushed over to the event loop thread to finish the result handler. This behavior helps with keeping certain logic on the event loop thread.
Regarding the other thread groups, they just handle specific functionality in vert.x. If you are stressed about the number of threads in vert.x, I would not worry about it. Vert.x does a good job keeping the OS threads to a minimum while maintaining high functionality and throughput.

Related

Why does the Disruptor hold lots of data when the producer is much faster than the consumer?

I'm learning about the LMAX Disruptor and have a problem: When I have a very large ring buffer, like 1024, and my producer is much faster than my consumer, the ring buffer will hold lots of data, but will not publish the events until my application ends. Which means my application will lose lots of data (my application is not a daemon).
I've tried to slow down the rate of the producer, which works. But I can't use this approach in my application, it would reduce my application's performance greatly.
val ringBufferSize = 1024
val disruptor = new Disruptor[util.Map[String, Object]](new MessageEventFactory, ringBufferSize, new MessageThreadFactory, ProducerType.MULTI, new BlockingWaitStrategy)
disruptor.handleEventsWith(new MessageEventHandler(batchSize, this))
disruptor.setDefaultExceptionHandler(new MessageExceptionHandler)
val ringBuffer = disruptor.start
val producer = new MessageEventProducer(ringBuffer)
part.foreach { row =>
// Thread.sleep(2000)
accm.add(1)
producer.onData(row)
// flush(row)
}
I want to find a way to control the batch size of the disruptor by myself, and is there any method to consume the rest of the data held at the end of my application?
If you let your application end abruptly, your consumers will end abruptly, too, of course. There is no need to slow down the producer, you simply need to block your application from exiting until all consumers (i. e. event handlers) have finished working on the outstanding events.
The normal way to do this is to invoke Disruptor.shutdown() on the main thread, thus blocking the application from exiting until Disruptor.shutdown() has returned.
In your code snipplet above, you'd add that command before you exit the routine after the part.foreach statement, blocking until the routine returns normally. That would ensure that all events are properly handled to completion.
The Disruptor excels mainly in buffering (smoothing out) bursts of data coming from a single (extremely fast) or multiple (still pretty fast) producer threads, to feed that data to consumers which perform in a predictable manner, thus eliminating as much latency and overhead due to lock contention as possible. You may find that simply invoking the consumer code from within your lambda may yield better or similar results if your producers are in fact much faster than your consumers, unless you use advanced techniques such as batching or setting up the Disruptor to run multiple instances of the same consumer in parallel threads, which requires the event handler implementation to be modified though (see the Disruptor FAQ).
In your example, it seems that all you try to accomplish is to feed an already available set of data (your "part" collection) into a single event handler (MessageEventHandler). In such a use case, you might be better off saying something like parts.stream().parallel().foreach(... messageEventHanler.onEvent(event) ...)

Serial Dispatch Queue with Asynchronous Blocks

Is there ever any reason to add blocks to a serial dispatch queue asynchronously as opposed to synchronously?
As I understand it a serial dispatch queue only starts executing the next task in the queue once the preceding task has completed executing. If this is the case, I can't see what you would you gain by submitting some blocks asynchronously - the act of submission may not block the thread (since it returns straight-away), but the task won't be executed until the last task finishes, so it seems to me that you don't really gain anything.
This question has been prompted by the following code - taken from a book chapter on design patterns. To prevent the underlying data array from being modified simultaneously by two separate threads, all modification tasks are added to a serial dispatch queue. But note that returnToPool adds tasks to this queue asynchronously, whereas getFromPool adds its tasks synchronously.
class Pool<T> {
private var data = [T]();
// Create a serial dispath queue
private let arrayQ = dispatch_queue_create("arrayQ", DISPATCH_QUEUE_SERIAL);
private let semaphore:dispatch_semaphore_t;
init(items:[T]) {
data.reserveCapacity(data.count);
for item in items {
data.append(item);
}
semaphore = dispatch_semaphore_create(items.count);
}
func getFromPool() -> T? {
var result:T?;
if (dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER) == 0) {
dispatch_sync(arrayQ, {() in
result = self.data.removeAtIndex(0);
})
}
return result;
}
func returnToPool(item:T) {
dispatch_async(arrayQ, {() in
self.data.append(item);
dispatch_semaphore_signal(self.semaphore);
});
}
}
Because there's no need to make the caller of returnToPool() block. It could perhaps continue on doing other useful work.
The thread which called returnToPool() is presumably not just working with this pool. It presumably has other stuff it could be doing. That stuff could be done simultaneously with the work in the asynchronously-submitted task.
Typical modern computers have multiple CPU cores, so a design like this improves the chances that CPU cores are utilized efficiently and useful work is completed sooner. The question isn't whether tasks submitted to the serial queue operate simultaneously — they can't because of the nature of serial queues — it's whether other work can be done simultaneously.
Yes, there are reasons why you'd add tasks to serial queue asynchronously. It's actually extremely common.
The most common example would be when you're doing something in the background and want to update the UI. You'll often dispatch that UI update asynchronously back to the main queue (which is a serial queue). That way the background thread doesn't have to wait for the main thread to perform its UI update, but rather it can carry on processing in the background.
Another common example is as you've demonstrated, when using a GCD queue to synchronize interaction with some object. If you're dealing with immutable objects, you can dispatch these updates asynchronously to this synchronization queue (i.e. why have the current thread wait, but rather instead let it carry on). You'll do reads synchronously (because you're obviously going to wait until you get the synchronized value back), but writes can be done asynchronously.
(You actually see this latter example frequently implemented with the "reader-writer" pattern and a custom concurrent queue, where reads are performed synchronously on concurrent queue with dispatch_sync, but writes are performed asynchronously with barrier with dispatch_barrier_async. But the idea is equally applicable to serial queues, too.)
The choice of synchronous v asynchronous dispatch has nothing to do with whether the destination queue is serial or concurrent. It's simply a question of whether you have to block the current queue until that other one finishes its task or not.
Regarding your code sample code, that is correct. The getFromPool should dispatch synchronously (because you have to wait for the synchronization queue to actually return the value), but returnToPool can safely dispatch asynchronously. Obviously, I'm wary of seeing code waiting for semaphores if that might be called from the main thread (so make sure you don't call getFromPool from the main thread!), but with that one caveat, this code should achieve the desired purpose, offering reasonably efficient synchronization of this pool object, but with a getFromPool that will block if the pool is empty until something is added to the pool.

Node.js multithreading using threads-a-gogo

I am implementing a REST service for financial calculation. So each request is supposed to be a CPU intensive task, and I think that the best place to create threads it's in the following function:
exports.execute = function(data, params, f, callback) {
var queriesList = [];
var resultList = [];
for (var i = 0; i < data.lista.length; i++)
{
var query = (function(cod) {
return function(callbackFlow) {
params.paramcodneg = cod;
doCdaQuery(params, function(err, result)
{
if (err)
{
return callback({ERROR: err}, null);
}
f(data, result, function(ret)
{
resultList.push(ret);
callbackFlow();
});
});
}
})(data.lista[i]);
queriesList.push(query);
}
flow.parallel(queriesList, function() {
callback(null, resultList);
});
};
I don't know what is best, run flow.parallel in a separeted thread or run each function of the queriesList in its own thread. What is best ? And how to use threads-a-gogo module for that ?
I've tried but couldn't write the right code for that.
Thanks in advance.
Kleyson Rios.
I'll admit that I'm relatively new to node.js and I haven't yet used threads a gogo, but I have had some experience with multi-threaded programming, so I'll take a crack at answering this question.
Creating a thread for every single query (I'm assuming these queries are CPU-bound calculations rather than IO-bound calls to a database) is not a good idea. Creating and destroying threads in an expensive operation, so creating an destroying a group of threads for every request that requires calculation is going to be a huge drag on performance. Too many threads will cause more overhead as the processor switches between them. There isn't any advantage to having more worker threads than processor cores.
Also, if each query doesn't take that much processing time, there will be more time spent creating and destroying the thread than running the query. Most of the time would be spent on threading overhead. In this case, you would be much better off using a single-threaded solution using flow or async, which distributes the processing over multiple ticks to allow the node.js event loop to run.
Single-threaded solutions are the easiest to understand and debug, but if the queries are preventing the main thread from getting other stuff done, then a multi-threaded solution is necessary.
The multi-threaded solution you propose is pretty good. Running all the queries in a separate thread prevents the main thread from bogging down. However, there isn't any point in using flow or async in this case. These modules simulate multi-threading by distributing the processing over multiple node.js ticks and tasks run in parallel don't execute in any particular order. However, these tasks still are running in a single thread. Since you're processing the queries in their own thread, and they're no longer interfering with the node.js event loop, then just run them one after another in a loop. Since all the action is happening in a thread without a node.js event loop, using flow or async in just introduces more overhead for no additional benefit.
A more efficient solution is to have a thread pool hanging out in the background and throw tasks at it. The thread pool would ideally have the same number of threads as processor cores, and would be created when the application starts up and destroyed when the application shuts down, so the expensive creating and destroying of threads only happens once. I see that Threads a Gogo has a thread pool that you can use, although I'm afraid I'm not yet familiar enough with it to give you all the details of using it.
I'm drifting into territory I'm not familiar with here, but I believe you could do it by pushing each query individually onto the global thread pool and when all the callbacks have completed, you'll be done.
The Node.flow module would be handy here, not because it would make processing any faster, but because it would help you manage all the query tasks and their callbacks. You would use a loop to push a bunch of parallel tasks on the flow stack using flow.parallel(...), where each task would send a query to the global threadpool using threadpool.any.eval(), and then call ready() in the threadpool callback to tell flow that the task is complete. After the parallel tasks have been queued up, use flow.join() to run all the tasks. That should run the queries on the thread pool, with the thread pool running as many tasks as it can at once, using all the cores and avoiding creating or destroying threads, and all the queries will have been processed.
Other requests would also be tossing their tasks onto the thread pool as well, but you wouldn't notice that because the request being processed would only get callbacks for the tasks that the request gave to the thread pool. Note that this would all be done on the main thread. The thread pool would do all the non-main-thread processing.
You'll need to do some threads a gogo and node.flow documentation reading and figure out some of the details, but that should give you a head start. Using a separate thread is more complex than using the main thread, and making use of a thread pool is even more complex, so you'll have to choose which one is best for you. The extra complexity might or might not be worth it.

QThread execution freezes my GUI

I'm new to multithread programming. I wrote this simple multi thread program with Qt. But when I run this program it freezes my GUI and when I click inside my widow, it responds that your program is not responding .
Here is my widget class. My thread starts to count an integer number and emits it when this number is dividable by 1000. In my widget simply I catch this number with signal-slot mechanism and show it in a label and a progress bar.
Widget::Widget(QWidget *parent) :
QWidget(parent),
ui(new Ui::Widget)
{
ui->setupUi(this);
MyThread *th = new MyThread;
connect( th, SIGNAL(num(int)), this, SLOT(setNum(int)));
th->start();
}
void Widget::setNum(int n)
{
ui->label->setNum( n);
ui->progressBar->setValue(n%101);
}
and here is my thread run() function :
void MyThread::run()
{
for( int i = 0; i < 10000000; i++){
if( i % 1000 == 0)
emit num(i);
}
}
thanks!
The problem is with your thread code producing an event storm. The loop counts very fast -- so fast, that the fact that you emit a signal every 1000 iterations is pretty much immaterial. On modern CPUs, doing a 1000 integer divisions takes on the order of 10 microseconds IIRC. If the loop was the only limiting factor, you'd be emitting signals at a peak rate of about 100,000 per second. This is not the case because the performance is limited by other factors, which we shall discuss below.
Let's understand what happens when you emit signals in a different thread from where the receiver QObject lives. The signals are packaged in a QMetaCallEvent and posted to the event queue of the receiving thread. An event loop running in the receiving thread -- here, the GUI thread -- acts on those events using an instance of QAbstractEventDispatcher. Each QMetaCallEvent results in a call to the connected slot.
The access to the event queue of the receiving GUI thread is serialized by a QMutex. On Qt 4.8 and newer, the QMutex implementation got a nice speedup, so the fact that each signal emission results in locking of the queue mutex is not likely to be a problem. Alas, the events need to be allocated on the heap in the worker thread, and then deallocated in the GUI thread. Many heap allocators perform quite poorly when this happens in quick succession if the threads happen to execute on different cores.
The biggest problem comes in the GUI thread. There seems to be a bunch of hidden O(n^2) complexity algorithms! The event loop has to process 10,000 events. Those events will be most likely delivered very quickly and end up in a contiguous block in the event queue. The event loop will have to deal with all of them before it can process further events. A lot of expensive operations happen when you invoke your slot. Not only is the QMetaCallEvent deallocated from the heap, but the label schedules an update() (repaint), and this internally posts a compressible event to the event queue. Compressible event posting has to, in worst case, iterate over entire event queue. That's one potential O(n^2) complexity action. Another such action, probably more important in practice, is the progressbar's setValue internally calling QApplication::processEvents(). This can, recursively call your slot to deliver the subsequent signal from the event queue. You're doing way more work than you think you are, and this locks up the GUI thread.
Instrument your slot and see if it's called recursively. A quick-and-dirty way of doing it is
void Widget::setNum(int n)
{
static int level = 0, maxLevel = 0;
level ++;
maxLevel = qMax(level, maxLevel);
ui->label->setNum( n);
ui->progressBar->setValue(n%101);
if (level > 1 && level == maxLevel-1) {
qDebug("setNum recursed up to level %d", maxLevel);
}
level --;
}
What is freezing your GUI thread is not QThread's execution, but the huge amount of work you make the GUI thread do. Even if your code looks innocuous.
Side Note on processEvents and Run-to-Completion Code
I think it was a very bad idea to have QProgressBar::setValue invoke processEvents(). It only encourages the broken way people code things (continuously running code instead of short run-to-completion code). Since the processEvents() call can recurse into the caller, setValue becomes a persona-non-grata, and possibly quite dangerous.
If one wants to code in continuous style yet keep the run-to-completion semantics, there are ways of dealing with that in C++. One is just by leveraging the preprocessor, for example code see my other answer.
Another way is to use expression templates to get the C++ compiler to generate the code you want. You may want to leverage a template library here -- Boost spirit has a decent starting point of an implementation that can be reused even though you're not writing a parser.
The Windows Workflow Foundation also tackles the problem of how to write sequential style code yet have it run as short run-to-completion fragments. They resort to specifying the flow of control in XML. There's apparently no direct way of reusing standard C# syntax. They only provide it as a data structure, a-la JSON. It'd be simple enough to implement both XML and code-based WF in Qt, if one wanted to. All that in spite of .NET and C# providing ample support for programmatic generation of code...
The way you implemented your thread, it does not have its own event loop (because it does not call exec()). I'm not sure if your code within run() is actually executed within your thread or within the GUI thread.
Usually you should not subclass QThread. You probably did so because you read the Qt Documentation which unfortunately still recommends subclassing QThread - even though the developers long ago wrote a blog entry stating that you should not subclass QThread. Unfortunately, they still haven't updated the documentation appropriately.
I recommend reading "You're doing it wrong" on Qt Blog and then use the answer by "Kari" as an example of how to set up a basic multi-threaded system.
But when I run this program it freezes my GUI and when I click inside my window,
it responds that your program is not responding.
Yes because IMO you're doing too much work in thread that it exhausts CPU. Generally program is not responding message pops up when process show no progress in handling application event queue requests. In your case this happens.
So in this case you should find a way to divide the work. Just for the sake of example say, thread runs in chunks of 100 and repeat the thread till it completes 10000000.
Also you should have look at QCoreApplication::processEvents() when you're performing a lengthy operation.

multithreading: how to process data in a vector, while the vector is being populated?

I have a single-threaded linux app which I would like to make parallel. It reads a data file, creates objects, and places them in a vector. Then it calls a compute-intensive method (.5 second+) on each object. I want to call the method in parallel with object creation. While I've looked at qt and tbb, I am open to other options.
I planned to start the thread(s) while the vector was empty. Each one would call makeSolids (below), which has a while loop that would run until interpDone==true and all objects in the vector have been processed. However, I'm a n00b when it comes to threading, and I've been looking for a ready-made solution.
QtConcurrent::map(Iter begin,Iter end,function()) looks very easy, but I can't use it on a vector that's changing in size, can I? And how would I tell it to wait for more data?
I also looked at intel's tbb, but it looked like my main thread would halt if I used parallel_for or parallel_while. That stinks, since their memory manager was recommended (open cascade's mmgt has poor performance when multithreaded).
/**intended to be called by a thread
\param start the first item to get from the vector
\param skip how many to skip over (4 for 4 threads)
*/
void g2m::makeSolids(uint start, uint incr) {
uint curr = start;
while ((!interpDone) || (lineVector.size() > curr)) {
if (lineVector.size() > curr) {
if (lineVector[curr]->isMotion()) {
((canonMotion*)lineVector[curr])->setSolidMode(SWEPT);
((canonMotion*)lineVector[curr])->computeSolid();
}
lineVector[curr]->setDispMode(BEST);
lineVector[curr]->display();
curr += incr;
} else {
uio::sleep(); //wait a little bit for interp
}
}
}
EDIT: To summarize, what's the simplest way to process a vector at the same time that the main thread is populating the vector?
Firstly, to benefit from threading you need to find similarly slow tasks for each thread to do. You said your per-object processing takes .5s+, how long does your file reading / object creation take? It could easily be a tenth or a thousandth of that time, in which case your multithreading approach is going to produce neglegible benefit. If that's the case, (yes, I'll answer your original question soon incase it's not) then think about simultaneously processing multiple objects. Given your processing takes quite a while, the thread creation overhead isn't terribly significant, so you could simply have your main file reading/object creation thread spawn a new thread and direct it at the newly created object. The main thread then continues reading/creating subsequent objects. Once all objects are read/created, and all the processing threads launched, the main thread "joins" (waits for) the worker threads. If this will create too many threads (thousands), then put a limit on how far ahead the main thread is allowed to get: it might read/create 10 objects then join 5, then read/create 10, join 10, read/create 10, join 10 etc. until finished.
Now, if you really want the read/create to be in parallel with the processing, but the processing to be serialised, then you can still use the above approach but join after each object. That's kind of weird if you're designing this with only this approach in mind, but good because you can easily experiment with the object processing parallelism above as well.
Alternatively, you can use a more complex approach that just involves the main thread (that the OS creates when your program starts), and a single worker thread that the main thread must start. They should be coordinated using a mutex (a variable ensuring mutually-exclusive, which means not-concurrent, access to data), and a condition variable which allows the worker thread to efficiently block until the main thread has provided more work. The terms - mutex and condition variable - are the standard terms in the POSIX threading that Linux uses, so should be used in the explanation of the particular libraries you're interested in. Summarily, the worker thread waits until the main read/create thread broadcasts it a wake-up signal indicating another object is ready for processing. You may want to have a counter with index of the last fully created, ready-for-processing object, so the worker thread can maintain it's count of processed objects and move along the ready ones before once again checking the condition variable.
It's hard to tell if you have been thinking about this problem deeply and there is more than you are letting on, or if you are just over thinking it, or if you are just wary of threading.
Reading the file and creating the objects is fast; the one method is slow. The dependency is each consecutive ctor depends on the outcome of the previous ctor - a little odd - but otherwise there are no data integrity issues so there doesn't seem to be anything that needs to be protected by mutexes and such.
Why is this more complicated than something like this (in crude pseudo-code):
while (! eof)
{
readfile;
object O(data);
push_back(O);
pthread_create(...., O, makeSolid);
}
while(x < vector.size())
{
pthread_join();
x++;
}
If you don't want to loop on the joins in your main then spawn off a thread to wait on them by passing a vector of TIDs.
If the number of created objects/threads is insane, use a thread pool. Or put a counter is the creation loop to limit the number of threads that can be created before running ones are joined.
#Caleb: quite -- perhaps I should have emphasized active threads. The GUI thread should always be considered one.

Resources