Hoping to sort (below left) by sector but distribute evenly (below right):
Name
Sector.
Name.
Sector
A
1
A
1
B
1
E
2
C
1
H
3
D
4
D
4
E
2
B
1
F
2
F
2
G
2
J
3
H
3
I
4
I
4
C
1
J
3
G
2
Real data is 70+ rows with 4 sectors.
I've worked around it manually but would love to figure out how to do it with a formula in excel.
Here's a more complete (and hopefully more accurate) idea - the carouselOrder is the column I'd like to generate via a formula.
guestID
guestSector
carouselOrder
1
1
1
2
1
5
3
1
9
4
1
13
5
2
2
6
2
6
7
2
10
8
2
14
9
3
3
10
3
7
11
3
11
12
2
18
13
1
17
14
1
20
15
1
23
16
2
21
17
2
24
18
2
27
19
1
26
20
1
29
21
1
30
22
1
31
23
3
15
24
3
19
25
3
22
26
3
25
27
3
28
28
1
32
29
4
4
30
4
8
31
4
12
32
4
16
When using Office 365 you can use the following in D2: =MOD(SEQUENCE(COUNTA(A2:A11),,0),4)+1
This create the repetitive counter of the sectors 1 to 4 to the total count of rows in your data.
In C2 use the following:
=BYROW(D2#,LAMBDA(x,
INDEX(
FILTER($A$2:$A$11,$B$2:$B$11=x),
SUM(--(D$2:x=x)))))
This filters the Names that equal the sector of mentioned row and indexes it to show only the result where the row in the filter result equals the count of the same sector (D2#) up to current row.
Let's try the following approach that doesn't require to create a helper column. I would like to explain first the logic to build the recurrence, then the excel formula that builds such recurrence.
If we sort the input data Name and Sector. by Sector. in ascending order, the new positions of the Name values (letters) can be calculated as follow (Table 1):
Name
Sector.Sorted
Position
A
1
1+4*0=1
B
1
1+4*1=5
C
1
1+4*2=9
E
2
2+4*0=2
F
2
2+4*1=6
G
2
2*4*2=10
H
3
3+4*0=3
J
3
3+4*1=7
D
4
4+4*0=4
I
4
4+4*1=8
The new positions of Name (letters) follows this pattern (Formula 1):
position = Sector.Sorted + groupSize * factor
where groupSize is 4 in our case and factor counts how many times the same Sector.Sorted value is repeated, starting from 0. Think about Sector.Sorted as groups, where each set of repeated values represents a group: 1,2,3 and 4.
If we are able to build the Position values we can sort Name, based on the new positions via SORTBY(array, by_array1) function. Check SORTBY documentation for more information how this function works.
Here is the formula to get the Name sorted in cell E2:
=LET(groupSize, 4, sorted, SORT(A2:B11,2), sName,
INDEX(sorted,,1),sSector, INDEX(sorted,,2),
seq0, SEQUENCE(ROWS(sSector),,0), mapResult,
MAP(sSector, seq0, LAMBDA(a,b, IF(b=0, "SAME",
IF(a=INDEX(sSector,b), "SAME", "NEW")))), factor,
SCAN(-1,mapResult, LAMBDA(aa,c,IF(c="SAME", aa+1,0))),
pos,MAP(sSector, factor, LAMBDA(m,n, m + groupSize*n)),
SORTBY(sName,pos)
)
Here is the output:
Explanation
The name sorted represents the input data sorted by Sector. in ascending order, i.e.: SORT(A2:B11,2). The names sName and sSector represent each column of sorted.
To identify each group we need the following sequence (seq0) starting from 0, i.e. SEQUENCE(ROWS(sSector),,0).
Now we need to identify when a new group starts. We use MAP function for that and the result is represented by the name mapResult:
MAP(sSector, seq0, LAMBDA(a,b, IF(b=0, "SAME",
IF(a=INDEX(sSector,b), "SAME", "NEW"))))
The logic is the following: If we are at the beginning of the sequence (first value of seq0), then returns SAME otherwise we check current value of sSector (a) against the previous one represented by INDEX(sSector,b) if they are the same, then we are in the same group, otherwise a new group started.
The intermediate result of mapResult is:
Name
Sector Sorted
mapResult
A
1
SAME
B
1
SAME
C
1
SAME
E
2
NEW
F
2
SAME
G
2
SAME
H
3
NEW
J
3
SAME
D
4
NEW
I
4
SAME
The first two columns are shown just for illustrative purpose, but mapResult only returns the last column.
Now we just need to create the counter based on every time we find NEW. In order to do that we use SCAN function and the result is stored under the name factor. This value represents the factor we use to multiply by 4 within each group (see Table 1):
SCAN(-1,mapResult, LAMBDA(aa,c,IF(c="SAME", aa+1,0)))
The accumulator starts in -1, because the counter starts with 0. Every time we find SAME, it increments by 1 the previous value. When it finds NEW (not equal to SAME), the accumulator is reset to 0.
Here is the intermediate result of factor:
Name
Sector Sorted
mapResult
factor
A
1
SAME
0
B
1
SAME
1
C
1
SAME
2
E
2
NEW
0
F
2
SAME
1
G
2
SAME
2
H
3
NEW
0
J
3
SAME
1
D
4
NEW
0
I
4
SAME
1
The first three columns are shown for illustrative purpose.
Now we have all the elements to build our pattern for the new positions represented with the name pos:
MAP(sSector, factor, LAMBDA(m,n, m + groupSize*n))
where m represents each element of Sector.Sorted and factor the previous calculated values. As you can see the formula in Excel represents the generic formula (Formula 1 see above). The intermediate result will be:
Name
Sector Sorted
mapResult
factor
pos
A
1
SAME
0
1
B
1
SAME
1
5
C
1
SAME
2
9
E
2
NEW
0
2
F
2
SAME
1
6
G
2
SAME
2
10
H
3
NEW
0
3
J
3
SAME
1
7
D
4
NEW
0
4
I
4
SAME
1
8
The previous columns are shown just for illustrative purpose. Now we have the new positions, so we are ready to sort based on the new positions for Name via:
SORTBY(sName,pos)
Update
The first MAP can be removed creating an array as input for SCAN that has the information of sSector and the index position to be used for finding the previous element. SCAN only allows a single array as input argument, so we can combine both information in a new array. This is the formula can be used instead:
=LET(groupSize, 4, sorted, SORT(A2:B11,2), sName,
INDEX(sorted,,1),sSector, INDEX(sorted,,2),
factor, SCAN(-1,sSector&"-"&SEQUENCE(ROWS(sSector),,0),
LAMBDA(aa,b, LET(s, TEXTSPLIT(b,"-"),item, INDEX(s,,1),
idx, INDEX(s,,2), IF(aa=-1, 0, IF(1*item=INDEX(sSector, idx), aa+1,0))))),
pos,MAP(sSector, factor, LAMBDA(m,n, m + groupSize*n)),
SORTBY(sName,pos)
)
We use inside of SCAN a LET function to calculate all required elements for doing the comparison as part of the calculation of the corresponding LAMBDA function. We extract the item and the idx position used to find previous element of sSector via:
1*item=INDEX(sSector, idx)
we are able to compare each element of sSector with previous one, starting from the second element of sSector. We multiply item by 1, because TEXTSPLIT converts the result to text, otherwise the comparison will fail.
I have 3 datasets a,b,c and 3 tables that give values based on the strength of their relationships. a has 5 items, b has 7 items, and c has 4 items. (a,b)(a,c)(b,c). I am trying to find a way to display all the data from these tables in a single graphic. The axis would have a Y shape with each leg representing a different data set and the cells representing their relationship strength.
I have looked through excel charts and haven't found anything that might help represent this. Is there another program which would be better? Looking for something simple to use.
Below is an example of the 3 tables and the type of data they contain. I want a way to show the scores for each relationship in a grid.
Table 1
A
B
Score
1
x
3
2
x
5
3
x
0
1
y
2
2
y
6
3
y
0
1
z
5
2
z
8
3
z
0
Table 2
A
C
Score
1
blue
3
2
blue
8
3
blue
2
1
red
0
2
red
4
3
red
1
1
yellow
3
2
yellow
3
3
yellow
9
Table 3
B
C
Score
x
blue
2
x
red
1
x
yellow
5
y
blue
0
y
red
3
y
yellow
7
z
blue
0
z
red
1
z
yellow
3
Here is an example of what I am trying to do with the data
I manually created this type of visual in autoCAD
This works as a one-off but it doesn't scale and is very tedious. Hoping there is a programmatic way to create something similar.
I have 2 large DataFrames with the same set of columns but different values. I need to combine the values in respective columns (A and B here, maybe be more in actual data) into single values in the same columns (see required output below). I have a quick way of implementing this using np.vectorize and df.to_numpy() but I am looking for a way to implement this strictly with pandas. Criteria here is first readability of code then time complexity.
df1 = pd.DataFrame({'A':[1,2,3,4,5], 'B':[5,4,3,2,1]})
print(df1)
A B
0 1 5
1 2 4
2 3 3
3 4 2
4 5 1
and,
df2 = pd.DataFrame({'A':[10,20,30,40,50], 'B':[50,40,30,20,10]})
print(df2)
A B
0 10 50
1 20 40
2 30 30
3 40 20
4 50 10
I have one way of doing it which is quite fast -
#This function might change into something more complex
def conc(a,b):
return str(a)+'_'+str(b)
conc_v = np.vectorize(conc)
required = pd.DataFrame(conc_v(df1.to_numpy(), df2.to_numpy()), columns=df1.columns)
print(required)
#Required Output
A B
0 1_10 5_50
1 2_20 4_40
2 3_30 3_30
3 4_40 2_20
4 5_50 1_10
Looking for an alternate way (strictly pandas) of solving this.
Criteria here is first readability of code
Another simple way is using add and radd
df1.astype(str).add(df2.astype(str).radd('-'))
A B
0 1-10 5-50
1 2-20 4-40
2 3-30 3-30
3 4-40 2-20
4 5-50 1-10
i have 2 different equally sized tables in excel. one table has job numbers, the other table has hours worked, i want to search how many hours in total were spent on each job
for example
------hours---------------job #
m t w th f s s --- | --- m t w th f s s
8 8 6 8 8 0 0 --- | --- 1 1 2 5 4 0 0
8 8 8 8 7 0 0 --- | --- 2 2 5 4 1 0 0
What would a formula look like to find the sum of hours spent working on job #5?
I import this data from google forms and I don't think I can change the format too much.
thanks
You could try a simple SUMIF:
=SUMIF(I3:O4,B6,A3:G4)
Changing the value of B6 to 5 will yield 16 hours in B7.
Here's a simplified example using a smaller set of data:
Enter formula in C10 and fill down
You can use SUMPRODUCT too:
=SUMPRODUCT(--($K$2:$Q$3=$I$7);$A$2:$G$3)
I have a couple of columns as shown below:
A B C D E
1 12 4 1
2 3 2 2
3 7
4 3 0 6
How would I be able to return a count of each column above so for example receive the result:
A B C D E
1 12 4 1
2 3 2 2
3 7
4 3 0 6
5 count:3 4 2 1
for each of the column. Im looking for a formula that would be able to do that in one cell(B5) returning a count for each of the columns, and avoid using fill handling as the data set is quite large
It's pretty easy, using Google Spreadsheet's functions:
=ArrayFormula(MMULT(TRANSPOSE(row(A1:A4)^0),--(len(A1:E4)>0)))
Or, if you want join them all:
=JOIN(", ",ArrayFormula(MMULT(TRANSPOSE(row(A1:A4)^0),--(len(A1:E4)>0))))