When should I repartition an RDD? - apache-spark

I know that I can repartition an RDD to increase its partitions and use coalesce to decrease its partitions. I have two questions regarding this that I cannot completely understand after reading different resources.
Spark will use a sensible default (1 partition per block which is 64MB in first versions and now 128MB) when generating an RDD. But I also read that it is recommended to use 2 or 3 times the number of cores running the jobs. So here comes the question:
How many partitions should I use for a given file? For example, suppose I have a 10GB .parquet file, 3 executors with 2 cores and 3gb memory each.
Should I repartition? How many partitions should I use? What is the better way to make that choice?
Are all data types (ie .txt, .parquet, etc..) repartitioned by default if no partitioning is provided?

Spark can run a single concurrent task for every partition of an RDD, up to the total number of cores in the cluster.
For example :
val rdd= sc.textFile ("file.txt", 5)
The above line of code will create an RDD named textFile with 5 partitions.
Suppose that you have a cluster with 4 cores and assume that each partition needs to process for 5 minutes. In case of the above RDD with 5 partitions, 4 partition processes will run in parallel as there are 4 cores and the 5th partition process will process after 5 minutes when one of the 4 cores, is free.
The entire processing will be completed in 10 minutes and during the 5th partition process, the resources (remaining 3 cores) will remain idle.
The best way to decide on the number of partitions in a RDD is to make the number of partitions equal to the number of cores in the cluster so that all the
partitions will process in parallel and the resources will be utilized in an optimal way.
Question : Are all data types (ie .txt, .parquet, etc..) repartitioned
by default if no partitioning is provided?
There will be default no of partitions for every rdd.
to check you can use rdd.partitions.length right after rdd created.
to use existing cluster resources in optimal way and to speed up, we have to consider re-partitioning to ensure that all cores are utilized and all partitions have enough number of records which are uniformly distributed.
For better understanding, also have a look at https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-partitions.html
Note : There is no fixed formula for this. general convention most of them follow is
(numOf executors * no of cores) * replicationfactor (which may be 2 or 3 times more )

Related

Spark Shuffle partition - if I have shuffle partition less than number of cores what would happen?

I am using databricks with Azure, so I don't have a way to provide the number of executors and memory per executors.
Let's consider I have the following configuration.
10 Worker nodes, each with 4 cores and 10 GB of memory.
it's a standalone configuration
input read size is 100 GB
now if I set my shuffle partition to 10, (less than total cores, 40). What would happen?
will it create total of 10 executors, one per node, with each executor occupying all the cores and all the memory?
If you don't use dynamic allocation, you will end up leaving most cores unused during execution. Think about you have 40 "slots" for computation available, but only 10 tasks to process, so 30 "slots" will be empty (just idle).
I have to add that the above is a very simplified situation. In reality, you can have multiple stages running in parallel, so depending on your query, you will still have all 40 cores utilized (see e.g. Does stages in an application run parallel in spark?)
Note also that spark.sql.shuffle.partitions is not the only parameter which determines the number of tasks/partitions. You can have different number of partitions for
reading files
if you modify your query using repartition, e.g. when using :
df
.repartition(100,$"key")
.groupBy($"key").count
your value of spark.sql.shuffle.partitions=10 will be overwritten by 100 in this exchange step
What your discribing as an expectation is named dynamic allocation on Spark. You can provide min and max allocation and then depending on amount of partiton the framework will be scaled. https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
But with only 10 partition on a 100 gb file you will have outOfMemoryErrors

Is it possible to do repartition after using partitionBy in a spark DF?

I am asking this question because if I specify repartition as 5, than all my data(>200Gigs) are moved to 5 different executors and 98% of the resources is unused. and then the partitionBy is happening which is again creating a lot of shuffle. Is there a way that first the partitionBy happens and then repartition runs on the data?
Although the question is not entirely easy to follow, the following aligns with the other answer and this approach should avoid the issues mentioned on unnecessary shuffling:
val n = [... some calculation for number of partitions / executors based on cluster config and volume of data to process ...]
df.repartition(n, $"field_1", $"field_2", ...)
.sortWithinPartitions("fieldx", "field_y")
.write.partitionBy("field_1", "field_2", ...)
.format("location")
whereby [field_1, field_2, ...] are the same set of fields for repartition and partitionBy.
You can use repartition(5, col("$colName")).
Thus when you will make partitionBy("$colName") you will skip shuffle for '$colName' since it's already been repartitioned.
Also consider to have as many partitions as the product of the number of executors by the number of used cores by 3 (this may vary between 2 and 4 though).
So as we know, Spark can only run 1 concurrent task for every partition of an RDD. Assuming you have 8 cores per executor and 5 executors:
You need to have: 8 * 5 * 3 = 120 partitions

What is the relationship between tasks and partitions?

Can I say?
The number of the Spark tasks equal to the number of the Spark partitions?
The executor runs once (batch inside of executor) is equal to one task?
Every task produce only a partition?
(duplicate of 1.)
The degree of parallelism, or the number of tasks that can be ran concurrently, is set by:
The number of Executor Instances (configuration)
The Number of Cores per Executor (configuration)
The Number of Partitions being used (coded)
Actual parallelism is the smaller of
executors * cores - which gives the amount of slots available to run tasks
partitions - each partition will translate to a task whenever a slot opens up.
Tasks that run on the same executor will share the same JVM. This is used by the Broadcast feature as you only need one copy of the Broadcast data per Executor for all tasks to be able to access it through shared memory.
You can have multiple executors running, on the same machine, or on different machines. Executors are the true means of scalability.
Note that each Task takes up one Thread ¹, and is assumed to be assigned to one core ².
So -
Is the number of the Spark tasks equal to the number of the Spark partitions?
No (see previous).
The executor runs once (batch inside of executor) is equal to one task?
An Executor is started as an environment for the tasks to run. Multiple tasks will run concurrently within that Executor (multiple threads).
Every task produce only a partition?
For a task, it is one Partition in, one partition out. However, a repartitioning or shuffle/sort can happen in between tasks.
The number of the Spark tasks equal to the number of the Spark partitions?
Same as (1.)
(¹) Assumption is that within your tasks, you are not multithreading yourself (never do that, otherwise core estimate will be off).
(²) Note that due to hyper-threading, you might have more than one virtual core per physical core, and thus you can have several threads per core. You might even be able to handle multiple threads (2 to 3) on a single core without hyper-threading.
Partitions are a feature of RDD and are only available at design time (before an action is called).
Tasks are part of TaskSet per Stage per ActiveJob in a Spark application.
Is the number of the Spark tasks equal to the number of the Spark partitions?
Yes.
The executor runs once (batch inside of executor) is equal to one task?
That recursively uses "executor" and does not make much sense to me.
Every task produce only a partition?
Almost.
Every task produce an output of executing the code (it was created for) for the data in a partition.
The number of the Spark tasks equal to the number of the Spark partitions?
Almost.
The number of the Spark tasks in a single stage equals to the number of RDD partitions.
1.The number of the Spark tasks equal to the number of the Spark partitions?
Yes.
Spark breaks up the data into chunks called partitions. Is a collection of rows that sit on one physical machine in the cluster. Default partition size is 128MB. Allow every executor perform work in parallel. One partition will have a parallelism of only one, even if you have many executors.
With many partitions and only one executor will give you a parallelism of only one. You need to balance the number of executors and partitions to have the desired parallelism. This means that each partition will be processed by only one executor (1 executor for 1 partition for 1 task at a time).
A good rule is that the number of partitions should be larger than the number of executors on your cluster
See also: Chambers, Bill; Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing Made Simple (p. 27). O'Reilly Media. Edição do Kindle.
2.The executor runs once (batch inside of executor) is equal to one task?
Cores are slot for tasks, and each executor can process more than one partition at a time if it has more than one core.
3.Every task produce only a partition?
It depend on the transformation.
Spark has Wide transformations and Narrow Transformation.
Wide Transformation: Will have input partitions contributing to many output partitions (shuffles -> Aggregation, sort, joins). Often referred to as a shuffle whereby Spark exchange partitions across the cluster. When we perform a shuffe, Spark write the results do disk
Narrow Transformation: Which input partition will contribute to only one output partition.
See also: Chambers, Bill; Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing Made Simple. O'Reilly Media. Edição do Kindle.
Note: Read file is a narrow transformation because it does not require shuffle, but when you read one file that is splittable like parquet this file will be split into many partitions

Kafka topic partitions to Spark streaming

I have some use cases that I would like to be more clarified, about Kafka topic partitioning -> spark streaming resource utilization.
I use spark standalone mode, so only settings I have are "total number of executors" and "executor memory". As far as I know and according to documentation, way to introduce parallelism into Spark streaming is using partitioned Kafka topic -> RDD will have same number of partitions as kafka, when I use spark-kafka direct stream integration.
So if I have 1 partition in the topic, and 1 executor core, that core will sequentially read from Kafka.
What happens if I have:
2 partitions in the topic and only 1 executor core? Will that core read first from one partition and then from the second one, so there will be no benefit in partitioning the topic?
2 partitions in the topic and 2 cores? Will then 1 executor core read from 1 partition, and second core from the second partition?
1 kafka partition and 2 executor cores?
Thank you.
The basic rule is that you can scale up to the number of Kafka partitions. If you set spark.executor.cores greater than the number of partitions, some of the threads will be idle. If it's less than the number of partitions, Spark will have threads read from one partition then the other. So:
2 partitions, 1 executor: reads from one partition then then other. (I am not sure how Spark decides how much to read from each before switching)
2p, 2c: parallel execution
1p, 2c: one thread is idle
For case #1, note that having more partitions than executors is OK since it allows you to scale out later without having to re-partition. The trick is to make sure that your partitions are evenly divisible by the number of executors. Spark has to process all the partitions before passing data onto the next step in the pipeline. So, if you have 'remainder' partitions, this can slow down processing. For example, 5 partitions and 4 threads => processing takes the time of 2 partitions - 4 at once then one thread running the 5th partition by itself.
Also note that you may also see better processing throughput if you keep the number of partitions / RDDs the same throughout the pipeline by explicitly setting the number of data partitions in functions like reduceByKey().

Settle the right number of partition on RDD

I read some comments which says than a good number of partition for a RDD is 2-3 time the number of core. I have 8 nodes each with two 12-cores processor, so i have 192 cores, i setup the partition beetween 384-576 but it doesn't seems works efficiently, i tried 8 partition, same result. Maybe i have to setup other parameters in order to my job works better on the cluster rather than on my machine. I add that the file i analyse make 150k lines.
val data = sc.textFile("/img.csv",384)
The primary effect would be by specifying too few partitions or far too many partitions.
Too few partitions You will not utilize all of the cores available in the cluster.
Too many partitions There will be excessive overhead in managing many small tasks.
Between the two the first one is far more impactful on performance. Scheduling too many smalls tasks is a relatively small impact at this point for partition counts below 1000. If you have on the order of tens of thousands of partitions then spark gets very slow.
Now, considering your case, you are getting the same results from 8 and 384-576 partitions. Generally the thumb rule says,
NoOfPartitions = (NumberOfWorkerNodes*NoOfCoresPerWorkerNode)-1
It says that, as we know, the task is processed by CPU cores. So we should set that many number of partitions which is the total number of cores in the cluster to process-1(for Application Master of driver). That means the each core will process each partition at a time.
That means with 191 partitions can improve the performance. Otherwise impact of setting less and more partitions scenario is explained in beginnning.
Hope this will help!!!

Resources