running Discrete wavelet transform in R Language - regular-language

Please can someone help with a solution for running Discrete wavelet transform in R.
I have tried with the following data format; Year, Rain.
Year is in form of 1970,1972,1973.... and Rain in form of 200, 85, 34, 56 23, 0.5... etc. I don't know if my data frame is correct. or if i need to do something to the data before I run it.
Haven't saved the data.frame as wave, I ran as:
rain.dwt.01 <- wavDWT(wave)
Here is my code:
getwd()
setwd("C:\\Users\\dell\\Desktop\\ANN")
wave<-read.csv(file.choose(),header = T)
library(wmtsa)
library(wavelets)
library(waveslim)
library(MASS)
library(wavethresh) ### loaded auxillary functions from Internet
con <- url("faculty.washington.edu/dbp/R-CODE/workshop.Rdata")
print(load(con))
close(con)
lplot(wave)
abline(h=mean(wave),lty="dotted",col="red")
rain.dwt.01 <- wavDWT(wave)
I got this error:
Error in itCall("RS_wavelets_transform_discrete_wavelet_convolution", :
(list) object cannot be coerced to type 'double
Please help with example so I can understand why this error appears

Related

add var with alphanumeric code in order of value

I have data from counties and for a peudonymized plot I want to add an alphanumeric code in the order of a sort variable. It is not so important what the code will look like, but I want to have a letter at the beginning so that it will not be confused with the numeric information in the chart.
In the original data, I have more than 26 observations. Therefore the code needs to have two digits.
# example data
county <- c("all", "Berkshire", "Blackpool", "Bournemouth", "Bristol",
"Cambridgeshire", "Cheshire", "Devon", "Dorset", "Essex",
"Gloucestershire", "Hampshire", "Kent", "Lincolnshire",
"Norfolk", "Oxfordshire", "Suffolk", "Wiltshire", "Worcestershire",
"Yorkshire")
sort <- c(-2, 16.5, 400, 331, 375.2, 13.1, 400, 376.4,
128.3, 400, 48.6, 6.7, 113.5, 43.7, 295.9,400,
261.5, 100, 183.3, 400)
df <- data.frame(county, sort)
This is how I would like the result to look like:

How does sklearn.linear_model.LinearRegression work with insufficient data?

To solve a 5 parameter model, I need at least 5 data points to get a unique solution. For x and y data below:
import numpy as np
x = np.array([[-0.24155831, 0.37083184, -1.69002708, 1.4578805 , 0.91790011,
0.31648635, -0.15957368],
[-0.37541846, -0.14572825, -2.19695883, 1.01136142, 0.57288752,
0.32080956, -0.82986857],
[ 0.33815532, 3.1123936 , -0.29317028, 3.01493602, 1.64978158,
0.56301755, 1.3958912 ],
[ 0.84486735, 4.74567324, 0.7982888 , 3.56604097, 1.47633894,
1.38743513, 3.0679506 ],
[-0.2752026 , 2.9110031 , 0.19218081, 2.0691105 , 0.49240373,
1.63213241, 2.4235483 ],
[ 0.89942508, 5.09052174, 1.26048572, 3.73477373, 1.4302902 ,
1.91907482, 3.70126468]])
y = np.array([-0.81388378, -1.59719762, -0.08256274, 0.61297275, 0.99359647,
1.11315445])
I used only 6 data to fit a 8 parameter model (7 slopes and 1 intercept).
lr = LinearRegression().fit(x, y)
print(lr.coef_)
array([-0.83916772, -0.57249998, 0.73025938, -0.02065629, 0.47637768,
-0.36962192, 0.99128474])
print(lr.intercept_)
0.2978781587718828
Clearly, it's using some kind of assignment to reduce the degrees of freedom. I tried to look into the source code but couldn't found anything about that. What method do they use to find the parameter of under specified model?
You don't need to reduce the degrees of freedom, it simply finds a solution to the least squares problem min sum_i (dot(beta,x_i)+beta_0-y_i)**2. For example, in the non-sparse case it uses the linalg.lstsq module from scipy. The default solver for this optimization problem is the gelsd LAPACK driver. If
A= np.concatenate((ones_v, X), axis=1)
is the augmented array with ones as its first column, then your solution is given by
x=numpy.linalg.pinv(A.T*A)*A.T*y
Where we use the pseudoinverse precisely because the matrix may not be of full rank. Of course, the solver doesn't actually use this formula but uses singular value Decomposition of A to reduce this formula.

decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

I thought that setting a fixed number of decimal points to all numbers of an array of Decimals, and the new arrays resulting from operations thereof, could be achieved by simply doing:
from decimal import *
getcontext().prec = 5 # 4 decimal points
v = Decimal(0.005)
print(v)
0.005000000000000000104083408558608425664715468883514404296875
However, I get spurious results that I know are the consequence of the contribution of these extra decimals to the calculations. Therefore, as a workaround, I used the round() function like this:
C_subgrid= [Decimal('33.340'), Decimal('33.345'), Decimal('33.350'), Decimal('33.355'), Decimal('33.360'), Decimal('33.365'), Decimal('33.370'), Decimal('33.375'), Decimal('33.380'), Decimal('33.385'), Decimal('33.390'), Decimal('33.395'), Decimal('33.400'), Decimal('33.405'), Decimal('33.410'), Decimal('33.415'), Decimal('33.420'), Decimal('33.425'), Decimal('33.430'), Decimal('33.435'), Decimal('33.440'), Decimal('33.445'), Decimal('33.450'), Decimal('33.455'), Decimal('33.460'), Decimal('33.465'), Decimal('33.470'), Decimal('33.475'), Decimal('33.480'), Decimal('33.485'), Decimal('33.490'), Decimal('33.495'), Decimal('33.500'), Decimal('33.505'), Decimal('33.510'), Decimal('33.515'), Decimal('33.520'), Decimal('33.525'), Decimal('33.530'), Decimal('33.535'), Decimal('33.540'), Decimal('33.545'), Decimal('33.550'), Decimal('33.555'), Decimal('33.560'), Decimal('33.565'), Decimal('33.570'), Decimal('33.575'), Decimal('33.580'), Decimal('33.585'), Decimal('33.590'), Decimal('33.595'), Decimal('33.600'), Decimal('33.605'), Decimal('33.610'), Decimal('33.615'), Decimal('33.620'), Decimal('33.625'), Decimal('33.630'), Decimal('33.635'), Decimal('33.640'), Decimal('33.645'), Decimal('33.650'), Decimal('33.655'), Decimal('33.660'), Decimal('33.665'), Decimal('33.670'), Decimal('33.675'), Decimal('33.680'), Decimal('33.685'), Decimal('33.690'), Decimal('33.695'), Decimal('33.700'), Decimal('33.705'), Decimal('33.710'), Decimal('33.715'), Decimal('33.720'), Decimal('33.725'), Decimal('33.730'), Decimal('33.735'), Decimal('33.740'), Decimal('33.745'), Decimal('33.750'), Decimal('33.755'), Decimal('33.760'), Decimal('33.765'), Decimal('33.770'), Decimal('33.775'), Decimal('33.780'), Decimal('33.785'), Decimal('33.790'), Decimal('33.795'), Decimal('33.800'), Decimal('33.805'), Decimal('33.810'), Decimal('33.815'), Decimal('33.820'), Decimal('33.825'), Decimal('33.830'), Decimal('33.835'), Decimal('33.840'), Decimal('33.845'), Decimal('33.850'), Decimal('33.855'), Decimal('33.860'), Decimal('33.865'), Decimal('33.870'), Decimal('33.875'), Decimal('33.880'), Decimal('33.885'), Decimal('33.890'), Decimal('33.895'), Decimal('33.900'), Decimal('33.905'), Decimal('33.910'), Decimal('33.915'), Decimal('33.920'), Decimal('33.925'), Decimal('33.930'), Decimal('33.935'), Decimal('33.940'), Decimal('33.945'), Decimal('33.950'), Decimal('33.955'), Decimal('33.960'), Decimal('33.965'), Decimal('33.970'), Decimal('33.975'), Decimal('33.980'), Decimal('33.985'), Decimal('33.990'), Decimal('33.995'), Decimal('34.000'), Decimal('34.005'), Decimal('34.010'), Decimal('34.015'), Decimal('34.020'), Decimal('34.025'), Decimal('34.030'), Decimal('34.035'), Decimal('34.040'), Decimal('34.045'), Decimal('34.050'), Decimal('34.055'), Decimal('34.060'), Decimal('34.065'), Decimal('34.070'), Decimal('34.075'), Decimal('34.080'), Decimal('34.085'), Decimal('34.090'), Decimal('34.095'), Decimal('34.100'), Decimal('34.105'), Decimal('34.110'), Decimal('34.115'), Decimal('34.120'), Decimal('34.125'), Decimal('34.130'), Decimal('34.135'), Decimal('34.140')]
C_subgrid = [round(v, 4) for v in C_subgrid]
I got the values of C_subgrid list by printing it out during execution of my code, and I pasted it here. Not sure where the single quotes come from. This code snipped worked fine in Python2.7, but when I upgraded to Python 3.7 it started raising this error:
File "/home2/thomas/Documents/4D-CHAINS_dev/lib/peak.py", line 301, in <listcomp>
C_subgrid = [round(v, 4) for v in C_subgrid] # convert all values to fixed decimal length floats!
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
Strangely, if I run it within ipython it works fine, only within my code it creates problems. Can anybody think of any possible reason?

PACF function in statsmodels.tsa.stattools gives numbers greater than 1 when using ywunbiased?

I have a dataframe which is of length 177 and I want to calculate and plot the partial auto-correlation function (PACF).
I have the data imported etc and I do:
from statsmodels.tsa.stattools import pacf
ys = pacf(data[key][array].diff(1).dropna(), alpha=0.05, nlags=176, method="ywunbiased")
xs = range(lags+1)
plt.figure()
plt.scatter(xs,ys[0])
plt.grid()
plt.vlines(xs, 0, ys[0])
plt.plot(ys[1])
The method used results in numbers greater than 1 for very long lags (90ish) which is incorrect and I get a RuntimeWarning: invalid value encountered in sqrtreturn rho, np.sqrt(sigmasq) but since I can't see their source code I don't know what this means.
To be honest, when I search for PACF, all the examples only carry out PACF up to 40 lags or 60 or so and they never have any significant PACF after lag=2 and so I couldn't compare to other examples either.
But when I use:
method="ols"
# or
method="ywmle"
the numbers are corrected. So it must be the algo they use to solve it.
I tried importing inspect and getsource method but its useless it just shows that it uses another package and I can't find that.
If you also know where the problem arises from, I would really appreciate the help.
For your reference, the values for data[key][array] are:
[1131.130005, 1144.939941, 1126.209961, 1107.300049, 1120.680054, 1140.839966, 1101.719971, 1104.23999, 1114.579956, 1130.199951, 1173.819946, 1211.920044, 1181.27002, 1203.599976, 1180.589966, 1156.849976, 1191.5, 1191.329956, 1234.180054, 1220.329956, 1228.810059, 1207.01001, 1249.47998, 1248.290039, 1280.079956, 1280.660034, 1294.869995, 1310.609985, 1270.089966, 1270.199951, 1276.660034, 1303.819946, 1335.849976, 1377.939941, 1400.630005, 1418.300049, 1438.23999, 1406.819946, 1420.859985, 1482.369995, 1530.619995, 1503.349976, 1455.27002, 1473.98999, 1526.75, 1549.380005, 1481.140015, 1468.359985, 1378.550049, 1330.630005, 1322.699951, 1385.589966, 1400.380005, 1280.0, 1267.380005, 1282.829956, 1166.359985, 968.75, 896.23999, 903.25, 825.880005, 735.090027, 797.869995, 872.8099980000001, 919.1400150000001, 919.320007, 987.4799800000001, 1020.6199949999999, 1057.079956, 1036.189941, 1095.630005, 1115.099976, 1073.869995, 1104.48999, 1169.430054, 1186.689941, 1089.410034, 1030.709961, 1101.599976, 1049.329956, 1141.199951, 1183.26001, 1180.550049, 1257.640015, 1286.119995, 1327.219971, 1325.829956, 1363.609985, 1345.199951, 1320.640015, 1292.280029, 1218.890015, 1131.420044, 1253.300049, 1246.959961, 1257.599976, 1312.410034, 1365.680054, 1408.469971, 1397.910034, 1310.329956, 1362.160034, 1379.319946, 1406.579956, 1440.670044, 1412.160034, 1416.180054, 1426.189941, 1498.109985, 1514.680054, 1569.189941, 1597.569946, 1630.73999, 1606.280029, 1685.72998, 1632.969971, 1681.550049, 1756.540039, 1805.810059, 1848.359985, 1782.589966, 1859.449951, 1872.339966, 1883.949951, 1923.569946, 1960.22998, 1930.6700440000002, 2003.369995, 1972.290039, 2018.050049, 2067.560059, 2058.899902, 1994.9899899999998, 2104.5, 2067.889893, 2085.51001, 2107.389893, 2063.110107, 2103.840088, 1972.180054, 1920.030029, 2079.360107, 2080.409912, 2043.939941, 1940.2399899999998, 1932.22998, 2059.73999, 2065.300049, 2096.949951, 2098.860107, 2173.600098, 2170.949951, 2168.27002, 2126.149902, 2198.810059, 2238.830078, 2278.8701170000004, 2363.639893, 2362.719971, 2384.199951, 2411.800049, 2423.409912, 2470.300049, 2471.649902, 2519.360107, 2575.26001, 2584.840088, 2673.610107, 2823.810059, 2713.830078, 2640.8701170000004, 2648.050049, 2705.27002, 2718.3701170000004, 2816.290039, 2901.52002, 2913.97998]
Your time series is pretty clearly not stationary, so that Yule-Walker assumptions are violated.
More generally, PACF is usually appropriate with stationary time series. You might difference your data first, before considering the partial autocorrelations.

linearK error in seq. default() cannot be NA, NaN

I am trying to learn linearK estimates on a small linnet object from the CRC spatstat book (chapter 17) and when I use the linearK function, spatstat throws an error. I have documented the process in the comments in the r code below. The error is as below.
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I do not understand how to resolve this. I am following this process:
# I have data of points for each data of the week
# d1 is district 1 of the city.
# I did the step below otherwise it was giving me tbl class
d1_data=lapply(split(d1, d1$openDatefactor),as.data.frame)
# I previously create a linnet and divided it into districts of the city
d1_linnet = districts_linnet[["d1"]]
# I create point pattern for each day
d1_ppp = lapply(d1_data, function(x) as.ppp(x, W=Window(d1_linnet)))
plot(d1_ppp[[1]], which.marks="type")
# I am then converting the point pattern to a point pattern on linear network
d1_lpp <- as.lpp(d1_ppp[[1]], L=d1_linnet, W=Window(d1_linnet))
d1_lpp
Point pattern on linear network
3 points
15 columns of marks: ‘status’, ‘number_of_’, ‘zip’, ‘ward’,
‘police_dis’, ‘community_’, ‘type’, ‘days’, ‘NAME’,
‘DISTRICT’, ‘openDatefactor’, ‘OpenDate’, ‘coseDatefactor’,
‘closeDate’ and ‘instance’
Linear network with 4286 vertices and 6183 lines
Enclosing window: polygonal boundary
enclosing rectangle: [441140.9, 448217.7] x [4640080, 4652557] units
# the errors start from plotting this lpp object
plot(d1_lpp)
"show.all" is not a graphical parameter
Show Traceback
Error in plot.window(...) : need finite 'xlim' values
coords(d1_lpp)
x y seg tp
441649.2 4649853 5426 0.5774863
445716.9 4648692 5250 0.5435492
444724.6 4646320 677 0.9189631
3 rows
And then consequently, I also get error on linearK(d1_lpp)
Error in seq.default(from = 0, to = right, length.out = npos + 1L) : 'to' cannot be NA, NaN or infinite
I feel lpp object has the problem, but I find it hard to interpret the errors and how to resolve them. Could someone please guide me?
Thanks
I can confirm there is a bug in plot.lpp when trying to plot the marked point pattern on the linear network. That will hopefully be fixed soon. You can plot the unmarked point pattern using
plot(unmark(d1_lpp))
I cannot reproduce the problem with linearK. Which version of spatstat are you running? In the development version on my laptop spatstat_1.51-0.073 everything works. There has been changes to this code recently, so it is likely that this will be solved by updating to development version (see https://github.com/spatstat/spatstat).

Resources