Access return value - haskell

Let's say I have this function:
functionName :: notimportant => a -> ([a])
I would like to recursively call this function and at each call to modify/update the return (the 2 elements from the tuple). The problem is that I do not know how to pattern match the tuple in order to add at each function's call elements in the list(the first parameter of the returned tuple).

I haven't understood your question. If it becomes more coherent, so may this answer.
The canonical code that applies a function like yours recursively is the following:
data Tree a = Node a [a]
unfold :: (a -> [a]) -> a -> Tree a
unfold f x = Node x $ map (unfold f) $ f x
You talk of tuples. I see no tuple in your type signature.

Related

What are the alternatives to prelude's iterate if the "output" values are not the same as those being iterated on?

I have come across a pattern where, I start with a seed value x and at each step generate a new seed value and a value to be output. My desired final result is a list of the output values. This can be represented by the following function:
my_iter :: (a -> (a, b)) -> a -> [b]
my_iter f x = y : my_iter f x'
where (x',y) = f x
And a contrived example of using this would be generating the Fibonacci numbers:
fibs:: [Integer]
fibs = my_iter (\(a,b) -> let c = a+b in ((b, c), c)) (0,1)
-- [1, 2, 3, 5, 8...
My problem is that I have this feeling that there is very likely a more idiomatic way to do this kind of stuff. What are the idiomatic alternatives to my function?
The only ones I can think of right now involve iterate from the Prelude, but they have some shortcomings.
One way is to iterate first and map after
my_iter f x = map f2 $ iterate f1 x
where f1 = fst . f
f2 = snd . f
However, this can look ugly if there is no natural way to split f into the separate f1 and f2 functions. (In the contrived Fibonacci case this is easy to do, but there are some situations where the generated value is not an "independent" function of the seed so its not so simple to split things)
The other way is to tuple the "output" values together with the seeds, and use a separate step to separate them (kind of like the "Schwartzian transform" for sorting things):
my_iter f x = map snd . tail $ iterate (f.fst) (x, undefined)
But this seems wierd, since we have to remember to ignore the generated values in order to get to the seed (the (f.fst) bit) and add we need an "undefined" value for the first, dummy generated value.
As already noted, the function you want is unfoldr. As the name suggests, it's the opposite of foldr, but it might be instructive to see exactly why that's true. Here's the type of foldr:
(a -> b -> b) -> b -> [a] -> b
The first two arguments are ways of obtaining something of type b, and correspond to the two data constructors for lists:
[] :: [a]
(:) :: a -> [a] -> [a]
...where each occurrence of [a] is replaced by b. Noting that the [] case produces a b with no input, we can consolidate the two as a function taking Maybe (a, b) as input.
(Maybe (a, b) -> b) -> ([a] -> b)
The extra parentheses show that this is essentially a function that turns one kind of transformation into another.
Now, simply reverse the direction of both transformations:
(b -> Maybe (a, b)) -> (b -> [a])
The result is exactly the type of unfoldr.
The underlying idea this demonstrates can be applied similarly to other recursive data types, as well.
The standard function you're looking for is called unfoldr.
Hoogle is a very useful tool in this case, since it doesn't only support searching functions by name, but also by type.
In your case, you came up with the desired type (a -> (a, b)) -> a -> [b]. Entering it yields no results - hmm.
Well, maybe there's a standard function with a slightly different syntax. For example, the standard function might have its arguments flipped; let's look for something with (a -> (a, b)) in its type signature somewhere. This time we're lucky as there are plenty of results, but all of them are in exotic packages and none of them seems very helpful.
Maybe the second part of your function is a better match, you want to generate a list out of some initial element after all - so type in a -> [b] and hit search. First result: unfoldr - bingo!
Another possibility is iterateM in State monad:
iterateM :: Monad m => m a -> m [a]
iterateM = sequence . repeat
It is not in standard library but it's easy to build.
So your my_iter is
evalState . sequence . repeat :: State s a -> s -> [a]

Haskell: beginner function syntax confusion

I'm currently trying to learn Haskell, but I'm struggling with understanding the syntax. For example, take the map function:
map :: (s -> t) -> [s] -> [t]
map f [] = []
map f (x:xs) = f x : map f xs
I understand what the function does, and that map has a function f :: s -> t as a parameter. But I read map :: (s -> t) -> [s] -> [t] as "map is a function which maps a function mapping from s to t to s and then to t", which is obviously wrong. Could someone clear this up for me?
The type (s -> t) -> [s] -> [t] can be read in two ways. One way is to treat it as a function of two arguments, the first a function of type s -> t and the second a list of type [s]. The return value is of type [t].
The other way is to understand that function arrows are right-associative, so the type is equivalent to (s -> t) -> ([s] -> [t]). Under this interpretation, map is a function that takes a function from element to element s -> t and turns it into a function from list to list [s] -> [t].
Similarly, when using the function, you can think of map foo xs as applying the function map to two arguments foo and xs. Or, since function application is left-associative, you can think of it as (map foo) xs, applying map to the single argument foo to get back a new function which you then apply to xs.
Since Haskell functions are curried, these are just two ways of looking at the exact same thing.
It might be helpful to define a couple type aliases, to make it a bit more explicit what all those arrows and brackets are doing:
type F1 a b = a -> b -- type synonym for single-argument functions
type List a = [a] -- type synonym for lists
so now you can write map's type signature as:
map :: F1 s t -> List s -> List t
which, if you're more familiar with Java or C++ or whatever, looks syntactically a bit more like:
List<T> map(F1<S, T> fun, List<S> list); // applies fun to each element in list
So you can think of it this way: map takes a function and a list, and returns another list. However, since functions are curried in Haskell, you don't have to pass all parameters at once. You could get away with partially applying map to just its first argument. So really its type signature is more like:
F1<List<S>, List<T>> map(F1<S, T> fun); // returns a function that applies fun to each element in a list
... which, when you call map with just that one fun argument, gives you something that sort of looks like:
List<T> mapFun(List<S> list); // applies fun to each element in list
So now back to Haskell: you can read map :: (s -> t) -> [s] -> [t] either as:
"map takes a function from s to t, and a list of s, and returns a list of t"
"map takes a function from s to t, and turns it into a function from a list of s to a list of t"
The former is fine; the latter is more helpful.
How about "map is a function which maps a (function from s to t) over a (list of s) giving a (list of t)"?
That is a direct translation of the type signature into English (albeit not very elegant English).
Read the signature from the end: -> [t] means returns a list of t. The rest is 'regular' parameters.
So, map takes a function that from an s makes a t, and a list of s.
Now it's easy: take a function s->t, apply it to each element of [s] and the result of it is [t].

Creating a list type using functions

For a silly challenge I am trying to implement a list type using as little of the prelude as possible and without using any custom types (the data keyword).
I can construct an modify a list using tuples like so:
import Prelude (Int(..), Num(..), Eq(..))
cons x = (x, ())
prepend x xs = (x, xs)
head (x, _) = x
tail (_, x) = x
at xs n = if n == 0 then xs else at (tail xs) (n-1)
I cannot think of how to write an at (!!) function. Is this even possible in a static language?
If it is possible could you try to nudge me in the right direction without telling me the answer.
There is a standard trick known as Church encoding that makes this easy. Here's a generic example to get you started:
data Foo = A Int Bool | B String
fooValue1 = A 3 False
fooValue2 = B "hello!"
Now, a function that wants to use this piece of data must know what to do with each of the constructors. So, assuming it wants to produce some result of type r, it must at the very least have two functions, one of type Int -> Bool -> r (to handle the A constructor), and the other of type String -> r (to handle the B constructor). In fact, we could write the type that way instead:
type Foo r = (Int -> Bool -> r) -> (String -> r) -> r
You should read the type Foo r here as saying "a function that consumes a Foo and produces an r". The type itself "stores" a Foo inside a closure -- so that it will effectively apply one or the other of its arguments to the value it closed over. Using this idea, we can rewrite fooValue1 and fooValue2:
fooValue1 = \consumeA consumeB -> consumeA 3 False
fooValue2 = \consumeA consumeB -> consumeB "hello!"
Now, let's try applying this trick to real lists (though not using Haskell's fancy syntax sugar).
data List a = Nil | Cons a (List a)
Following the same format as before, consuming a list like this involves either giving a value of type r (in case the constructor was Nil) or telling what to do with an a and another List a, so. At first, this seems problematic, since:
type List a r = (r) -> (a -> List a -> r) -> r
isn't really a good type (it's recursive!). But we can instead demand that we first reduce all the recursive arguments to r first... then we can adjust this type to make something more reasonable.
type List a r = (r) -> (a -> r -> r) -> r
(Again, we should read the type List a r as being "a thing that consumes a list of as and produces an r".)
There's one final trick that's necessary. What we would like to do is to enforce the requirement that the r that our List a r returns is actually constructed from the arguments we pass. That's a little abstract, so let's give an example of a bad value that happens to have type List a r, but which we'd like to rule out.
badList = \consumeNil consumeCons -> False
Now, badList has type List a Bool, but it's not really a function that consumes a list and produces a Bool, since in some sense there's no list being consumed. We can rule this out by demanding that the type work for any r, no matter what the user wants r to be:
type List a = forall r. (r) -> (a -> r -> r) -> r
This enforces the idea that the only way to get an r that gets us off the ground is to use the (user-supplied) consumeNil function. Can you see how to make this same refinement for our original Foo type?
If it is possible could you try and nudge me in the right direction without telling me the answer.
It's possible, in more than one way. But your main problem here is that you've not implemented lists. You've implemented fixed-size vectors whose length is encoded in the type.
Compare the types from adding an element to the head of a list vs. your implementation:
(:) :: a -> [a] -> [a]
prepend :: a -> b -> (a, b)
To construct an equivalent of the built-in list type, you'd need a function like prepend with a type resembling a -> b -> b. And if you want your lists to be parameterized by element type in a straightforward way, you need the type to further resemble a -> f a -> f a.
Is this even possible in a static language?
You're also on to something here, in that the encoding you're using works fine in something like Scheme. Languages with "dynamic" systems can be regarded as having a single static type with implicit conversions and metadata attached, which obviously solves the type mismatch problem in a very extreme way!
I cannot think of how to write an at (!!) function.
Recalling that your "lists" actually encode their length in their type, it should be easy to see why it's difficult to write functions that do anything other than increment/decrement the length. You can actually do this, but it requires elaborate encoding and more advanced type system features. A hint in this direction is that you'll need to use type-level numbers as well. You'd probably enjoy doing this as an exercise as well, but it's much more advanced than encoding lists.
Solution A - nested tuples:
Your lists are really nested tuples - for example, they can hold items of different types, and their type reveals their length.
It is possible to write indexing-like function for nested tuples, but it is ugly, and it won't correspond to Prelude's lists. Something like this:
class List a b where ...
instance List () b where ...
instance List a b => List (b,a) b where ...
Solution B - use data
I recommend using data construct. Tuples are internally something like this:
data (,) a b = Pair a b
so you aren't avoiding data. The division between "custom types" and "primitive types" is rather artificial in Haskell, as opposed to C.
Solution C - use newtype:
If you are fine with newtype but not data:
newtype List a = List (Maybe (a, List a))
Solution D - rank-2-types:
Use rank-2-types:
type List a = forall b. b -> (a -> b -> b) -> b
list :: List Int
list = \n c -> c 1 (c 2 n) -- [1,2]
and write functions for them. I think this is closest to your goal. Google for "Church encoding" if you need more hints.
Let's set aside at, and just think about your first four functions for the moment. You haven't given them type signatures, so let's look at those; they'll make things much clearer. The types are
cons :: a -> (a, ())
prepend :: a -> b -> (a, b)
head :: (a, b) -> a
tail :: (a, b) -> b
Hmmm. Compare these to the types of the corresponding Prelude functions1:
return :: a -> [a]
(:) :: a -> [a] -> [a]
head :: [a] -> a
tail :: [a] -> [a]
The big difference is that, in your code, there's nothing that corresponds to the list type, []. What would such a type be? Well, let's compare, function by function.
cons/return: here, (a,()) corresponds to [a]
prepend/(:): here, both b and (a,b) correspond to [a]
head: here, (a,b) corresponds to [a]
tail: here, (a,b) corresponds to [a]
It's clear, then, that what you're trying to say is that a list is a pair. And prepend indicates that you then expect the tail of the list to be another list. So what would that make the list type? You'd want to write type List a = (a,List a) (although this would leave out (), your empty list, but I'll get to that later), but you can't do this—type synonyms can't be recursive. After all, think about what the type of at/!! would be. In the prelude, you have (!!) :: [a] -> Int -> a. Here, you might try at :: (a,b) -> Int -> a, but this won't work; you have no way to convert a b into an a. So you really ought to have at :: (a,(a,b)) -> Int -> a, but of course this won't work either. You'll never be able to work with the structure of the list (neatly), because you'd need an infinite type. Now, you might argue that your type does stop, because () will finish a list. But then you run into a related problem: now, a length-zero list has type (), a length-one list has type (a,()), a length-two list has type (a,(a,())), etc. This is the problem: there is no single "list type" in your implementation, and so at can't have a well-typed first parameter.
You have hit on something, though; consider the definition of lists:
data List a = []
| a : [a]
Here, [] :: [a], and (:) :: a -> [a] -> [a]. In other words, a list is isomorphic to something which is either a singleton value, or a pair of a value and a list:
newtype List' a = List' (Either () (a,List' a))
You were trying to use the same trick without creating a type, but it's this creation of a new type which allows you to get the recursion. And it's exactly your missing recursion which allows lists to have a single type.
1: On a related note, cons should be called something like singleton, and prepend should be cons, but that's not important right now.
You can implement the datatype List a as a pair (f, n) where f :: Nat -> a and n :: Nat, where n is the length of the list:
type List a = (Int -> a, Int)
Implementing the empty list, the list operations cons, head, tail, and null, and a function convert :: List a -> [a] is left as an easy exercise.
(Disclaimer: stole this from Bird's Introduction to Functional Programming in Haskell.)
Of course, you could represent tuples via functions as well. And then True and False and the natural numbers ...

What to call a function that splits lists?

I want to write a function that splits lists into sublists according to what items satisfy a given property p. My question is what to call the function. I'll give examples in Haskell, but the same problem would come up in F# or ML.
split :: (a -> Bool) -> [a] -> [[a]] --- split lists into list of sublists
The sublists, concatenated, are the original list:
concat (split p xss) == xs
Every sublist satisfies the initial_p_only p property, which is to say (A) the sublist begins with an element satisfying p—and is therefore not empty, and (B) no other elements satisfy p:
initial_p_only :: (a -> Bool) -> [a] -> Bool
initial_p_only p [] = False
initial_p_only p (x:xs) = p x && all (not . p) xs
So to be precise about it,
all (initial_p_only p) (split p xss)
If the very first element in the original list does not satisfy p, split fails.
This function needs to be called something other than split. What should I call it??
I believe the function you're describing is breakBefore from the list-grouping package.
Data.List.Grouping: http://hackage.haskell.org/packages/archive/list-grouping/0.1.1/doc/html/Data-List-Grouping.html
ghci> breakBefore even [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6]
[[3,1],[4,1,5,9],[2],[6,5,3,5],[8,9,7,9,3],[2,3],[8],[4],[6],[2],[6]]
I quite like some name based on the term "break" as adamse suggests. There are quite a few possible variants of the function. Here is what I'd expect (based on the naming used in F# libraries).
A function named just breakBefore would take an element before which it should break:
breakBefore :: Eq a => a -> [a] -> [[a]]
A function with the With suffix would take some kind of function that directly specifies when to break. In case of brekaing this is the function a -> Bool that you wanted:
breakBeforeWith :: (a -> Bool) -> [a] -> [[a]]
You could also imagine a function with By suffix would take a key selector and break when the key changes (which is a bit like group by, but you can have multiple groups with the same key):
breakBeforeBy :: Eq k => (a -> k) -> [a] -> [[a]]
I admit that the names are getting a bit long - and maybe the only function that is really useful is the one you wanted. However, F# libraries seem to be using this pattern quite consistently (e.g. there is sort, sortBy taking key selector and sortWith taking comparer function).
Perhaps it is possible to have these three variants for more of the list processing functions (and it's quite good idea to have some consistent naming pattern for these three types).

Applying a function that may fail to all values in a list

I want to apply a function f to a list of values, however function f might randomly fail (it is in effect making a call out to a service in the cloud).
I thought I'd want to use something like map, but I want to apply the function to all elements in the list and afterwards, I want to know which ones failed and which were successful.
Currently I am wrapping the response objects of the function f with an error pair which I could then effectively unzip afterwards
i.e. something like
g : (a->b) -> a -> [ b, errorBoolean]
f : a-> b
and then to run the code ... map g (xs)
Is there a better way to do this? The other alternative approach was to iterate over the values in the array and then return a pair of arrays, one which listed the successful values and one which listed the failures. To me, this seems to be something that ought to be fairly common. Alternatively I could return some special value. What's the best practice in dealing with this??
If f is making a call out to the cloud, than f is undoubtedly using some monad, probably the IO monad or a monad derived from the IO monad. There are monadic versions of map. Here is what you would typically do, as a first attempt:
f :: A -> IO B -- defined elsewhere
g :: [A] -> IO [B]
g xs = mapM f xs
-- or, in points-free style:
g = mapM f
This has the (possibly) undesirable property that g will fail, returning no values, if any call to f fails. We fix that by making it so f returns either an answer or an error message.
type Error = String
f :: A -> IO (Either Error B)
g :: [A] -> IO [Either Error B]
g = mapM f
If you want all of the errors to be returned together, and all of the successes clumped together, you can use the lefts and rights functions from Data.Either.
h :: [A] -> IO ([B], [Error])
h xs = do ys <- g xs
return (rights ys, lefts ys)
If you don't need the error messages, just use Maybe B instead of Either Error B.
The Either data type is the most common way to represent a value which can either result in an error or a correct value. Errors use the Left constructor, correct values use the Right constructor. As a bonus, "right" also means "correct" in English, but the reason that the correct value uses the Right constructor is actually deeper (because this means we can create a functor out of the Either type which modifies correct results, which is not possible over the Left constructor).
You could write your g to return a Maybe monad:
f: a -> b
g: (a -> b) -> a -> Maybe b
If f fails, g returns Nothing, otherwise it returns Just (f x).

Resources