Groovy call field - groovy

I'm trying to put into the field an object that supports a call operation, and then to call him. I can do it without intermediate reading fields in a variable?
My attempt looks like this:
class CallableObjectDynamic {
def call() {
return "5"
}
}
class MyClassDynamic {
CallableObjectDynamic field = new CallableObjectDynamic()
}
class GroovyRunnerDynamic {
static String make(int arg1) {
MyClassDynamic x = new MyClassDynamic()
return x.field()
}
}
​
But I receive groovy.lang.MissingMethodException.
What can you do? Or can anyone give a proof where it's written that we can't call the field?

Membership (.) has lower order of precedence than function/method/call invocation (()). Thus this line:
return x.field()
is interpreted as "invoke the 'field' method on the 'x' object".
To get Groovy to parse the code as you desire, the minimal change would be to regroup using parentheses, as follows:
return (x.field)()
which is (ultimately) interpreted as "invoke the 'call' method on the 'field' object member of the 'x' object", as desired.

It is trivial issue. Not required to have parenthesis for field.
Change from:
return x.field()
To:
return x.field
If you want to execute call method further, then use below code snippet.
Note that static method return type is changed.
class CallableObjectDynamic {
def call() {
return "5"
}
}
class MyClassDynamic {
CallableObjectDynamic field = new CallableObjectDynamic()
}
class GroovyRunnerDynamic {
static def make(int arg1) {
MyClassDynamic x = new MyClassDynamic()
return x.field
}
}
​GroovyRunnerDynamic.make(1)​.call()​
Output would be : 5
Not sure why argument to make method is done here, seems to be not used in the above code.
Alternatively, you can change
class GroovyRunnerDynamic {
static def make(int arg1) {
MyClassDynamic x = new MyClassDynamic()
return x.field.call()
}
}
​GroovyRunnerDynamic.make(1)
EDIT: Based on OP's implicit call.
Not really sure how it is working, but the below does implicit call. Just assign x.field to a variable and just add parenthesis for that as shown below.
class GroovyRunnerDynamic {
static String make(int arg1) {
MyClassDynamic x = new MyClassDynamic()
def fun = x.field
fun()
}
}
GroovyRunnerDynamic.make(1)

Related

GroovyShell and Binding.setVariable() for callable objects

I am experimenting with some dynamic variable creation with GroovyShell and encountered an issue. First, the working code:
static def defVar(def glob) {
glob.setVariable('test', new Test())
}
class MyBinding extends Binding {
}
class Test {
def call() {
println("--- hello ---")
}
}
Binding glob = new MyBinding()
GroovyShell shell = new GroovyShell(glob)
defVar(glob)
shell.parse('test()').run()
This gives me the expected output:
--- hello ---
However, I want to call setVariable() dynamically when getVariable() is called, something like this:
static def defVar(def glob) {
glob.setVariable('test', new Test())
}
class MyBinding extends Binding {
def getVariable(String name) {
if (! hasVariable('test')) {
BindingTest.defVar(this)
}
return super.getVariable(name)
}
}
class Test {
def call() {
println("--- hello ---")
}
}
Binding glob = new MyBinding()
GroovyShell shell = new GroovyShell(glob)
//defVar(glob)
shell.parse('test()').run()
But this fails with the below error:
Caught: groovy.lang.MissingMethodException: No signature of method: Script1.test() is applicable for argument types: () values: []
Possible solutions: getAt(java.lang.String), use([Ljava.lang.Object;), use(java.lang.Class, groovy.lang.Closure), use(java.util.List, groovy.lang.Closure), wait(), wait(long)
groovy.lang.MissingMethodException: No signature of method: Script1.test() is applicable for argument types: () values: []
Possible solutions: getAt(java.lang.String), use([Ljava.lang.Object;), use(java.lang.Class, groovy.lang.Closure), use(java.util.List, groovy.lang.Closure), wait(), wait(long)
at Script1.run(Script1.groovy:1)
at Script1$run.call(Unknown Source)
at BindingTest.run(BindingTest.groovy:23)
When I added tracing code like this:
class MyBinding extends Binding {
def getVariable(String name) {
if (! hasVariable(name)) {
BindingTest.defVar(this)
}
println("getVariable: ${name}: ${super.getVariable(name).getClass().getName()}")
return super.getVariable(name)
}
void setVariable (String name, def val) {
println("setVariable: ${name}: ${val.getClass().getName()}")
super.setVariable(name, val)
}
def getProperty(String name) {
println("getProperty: ${name}: ${super.getProperty(name)}")
return super.getProperty(name)
}
void setProperty (String name, def val) {
println("setProperty: ${name}: ${val.getClass().getName()}")
super.setProperty(name, val)
}
}
In the working case, I get the below output:
setVariable: test: Test
--- hello ---
In the non-working case, I get this output:
setVariable: test: Test
getVariable: test: Test
Caught: groovy.lang.MissingMethodException: No signature of method: Script1.test() is applicable for argument types: () values: []
...
Two questions:
In the working scenario, why is there no getVariable?
In the non-working scenario, why is the Test object returned by getVariable getting rejected?
Note that this issue is specific to callable values. If I set a simple value such as a string, to test, then both approaches work fine. E.g., with this sort of a change:
...
static def defVar(def glob) {
glob.setVariable('test', '--- hello ---')
}
...
shell.parse('println(test)').run()
I get the below identical output with both approaches:
setVariable: test: java.lang.String
getVariable: test: java.lang.String
setVariable: test: java.lang.String
--- hello ---
Though, I am not sure why setVariable gets called twice. I couldn't find any documentation explaining these puzzling behaviors. Could anybody here shed some light on them?
Please note, all the code snippets have been simplified for the ease of demonstrating the problem rather than for their intended purpose
When you use a property as a callable fallback, the Binding.getVariable() method does not get involved. This behavior is controlled by the metaclass, and in your case, it all drives to the execution of the MetaClassImpl.invokePropertyOrMissing() method. This method determines if
test()
should invoke test.call() (in case of an existing property), or should it fallback to the missingMethod() method. Here is what this method implementation looks like:
private Object invokePropertyOrMissing(Object object, String methodName, Object[] originalArguments, boolean fromInsideClass, boolean isCallToSuper) {
// if no method was found, try to find a closure defined as a field of the class and run it
Object value = null;
final MetaProperty metaProperty = this.getMetaProperty(methodName, false);
if (metaProperty != null)
value = metaProperty.getProperty(object);
else {
if (object instanceof Map)
value = ((Map)object).get(methodName);
}
if (value instanceof Closure) { // This test ensures that value != this If you ever change this ensure that value != this
Closure closure = (Closure) value;
MetaClass delegateMetaClass = closure.getMetaClass();
return delegateMetaClass.invokeMethod(closure.getClass(), closure, CLOSURE_DO_CALL_METHOD, originalArguments, false, fromInsideClass);
}
if (object instanceof Script) {
Object bindingVar = ((Script) object).getBinding().getVariables().get(methodName);
if (bindingVar != null) {
MetaClass bindingVarMC = ((MetaClassRegistryImpl) registry).getMetaClass(bindingVar);
return bindingVarMC.invokeMethod(bindingVar, CLOSURE_CALL_METHOD, originalArguments);
}
}
return invokeMissingMethod(object, methodName, originalArguments, null, isCallToSuper);
}
Source: https://github.com/apache/groovy/blob/GROOVY_2_5_X/src/main/groovy/groovy/lang/MetaClassImpl.java#L1262-L1287
Now, pay attention to the branch if (object instanceof Script) and how the binding variable gets retrieved. It tries to retrieve test variable from binding object using:
Object bindingVar = ((Script) object).getBinding().getVariables().get(methodName);
Your code would work if it was:
Object bindingVar = ((Script) object).getBinding().getVariable(methodName);
instead. But it's not.
You can make your second case working if you override getVariables() method instead of getVariable(String name), for instance:
class MyBinding extends Binding {
#Override
Map getVariables() {
return super.getVariables() + [
test: new Test()
]
}
}
Of course, your final implementation might be much more sophisticated. (E.g. you could get super.getVariables() map first, check which variables are missing and add a default variable only if the initial map was missing given variable.) But this is up to you.
Alternatively, consider using methodMissing instead of the binding variable fallback. It could make your code much easier to read and reason about.

What is the static version of propertyMissing method in Groovy?

ok - tried looking /reading and not sure i have an answer to this.
I have a Utility class which wraps a static ConcurrentLinkedQueue internally.
The utility class itself adds some static methods - i dont expect to call new to create an instance of the Utility.
I want to intercept the getProperty calls the utility class - and implement these internally in the class definition
I can achieve this by adding the following to the utility classes metaclass, before i use it
UnitOfMeasure.metaClass.static.propertyMissing = {name -> println "accessed prop called $name"}
println UnitOfMeasure.'Each'
however what i want to do is declare the interception in the class definition itself. i tried this in the class definition - but it never seems to get called
static def propertyMissing (receiver, String propName) {
println "prop $propName, saught"
}
i also tried
static def getProperty (String prop) { println "accessed $prop"}
but this isnt called either.
So other than adding to metaClass in my code/script before i use, how can declare the in the utility class that want to capture property accesses
the actual class i have looks like this at present
class UnitOfMeasure {
static ConcurrentLinkedQueue UoMList = new ConcurrentLinkedQueue(["Each", "Per Month", "Days", "Months", "Years", "Hours", "Minutes", "Seconds" ])
String uom
UnitOfMeasure () {
if (!UoMList.contains(this) )
UoMList << this
}
static list () {
UoMList.toArray()
}
static getAt (index) {
def value = null
if (index in 0..(UoMList.size() -1))
value = UoMList[index]
else if (index instanceof String) {
Closure matchClosure = {it.toUpperCase().contains(index.toUpperCase())}
def position = UoMList.findIndexOf (matchClosure)
if (position != -1)
value = UoMList[position]
}
value
}
static def propertyMissing (receiver, String propName) {
println "prop $propName, saught"
}
//expects either a String or your own closure, with String will do case insensitive find
static find (match) {
Closure matchClosure
if (match instanceof Closure)
matchClosure = match
if (match instanceof String) {
matchClosure = {it.toUpperCase().contains(match.toUpperCase())}
}
def inlist = UoMList.find (matchClosure)
}
static findWithIndex (match) {
Closure matchClosure
if (match instanceof Closure)
matchClosure = match
else if (match instanceof String) {
matchClosure = {it.toUpperCase().contains(match.toUpperCase())}
}
def position = UoMList.findIndexOf (matchClosure)
position != -1 ? [UoMList[position], position] : ["Not In List", -1]
}
}
i'd appreciate the secret of doing this for a static utility class rather than instance level property interception, and doing it in class declaration - not by adding to metaClass before i make the calls.
just so you can see the actual class, and script that calls - i've attached these below
my script thats calling the class looks like this
println UnitOfMeasure.list()
def (uom, position) = UnitOfMeasure.findWithIndex ("Day")
println "$uom at postition $position"
// works UnitOfMeasure.metaClass.static.propertyMissing = {name -> println "accessed prop called $name"}
println UnitOfMeasure[4]
println UnitOfMeasure.'Per'
which errors like this
[Each, Per Month, Days, Months, Years, Hours, Minutes, Seconds]
Days at postition 2
Years
Caught: groovy.lang.MissingPropertyException: No such property: Per for class: com.softwood.portfolio.UnitOfMeasure
Possible solutions: uom
groovy.lang.MissingPropertyException: No such property: Per for class: com.softwood.portfolio.UnitOfMeasure
Possible solutions: uom
at com.softwood.scripts.UoMTest.run(UoMTest.groovy:12)
Static version of propertyMissing method is called $static_propertyMissing:
static def $static_propertyMissing(String name) {
// do something
}
This method gets invoked by MetaClassImpl at line 1002:
protected static final String STATIC_METHOD_MISSING = "$static_methodMissing";
protected static final String STATIC_PROPERTY_MISSING = "$static_propertyMissing";
// ...
protected Object invokeStaticMissingProperty(Object instance, String propertyName, Object optionalValue, boolean isGetter) {
MetaClass mc = instance instanceof Class ? registry.getMetaClass((Class) instance) : this;
if (isGetter) {
MetaMethod propertyMissing = mc.getMetaMethod(STATIC_PROPERTY_MISSING, GETTER_MISSING_ARGS);
if (propertyMissing != null) {
return propertyMissing.invoke(instance, new Object[]{propertyName});
}
} else {
// .....
}
// ....
}
Example:
class Hello {
static def $static_propertyMissing(String name) {
println "Hello, $name!"
}
}
Hello.World
Output:
Hello, World!

modify script variable from a Closure in Groovy

I am trying to modify a script variable from inside a closure in a function. The problem can be distilled down to this:
#groovy.transform.Field int myField = 0
incrementField()
assert myField == 1
def incrementField() {
1.times { myField++ }
}
I think the problem has something to do with closure delegates, but I cannot quite wrap my head around the docs.
This behavior is caused by groovy.lang.Script class and the fact that it overrides following methods:
Object getProperty(String property)
void setProperty(String property, Object newValue)
Closure you have shown in the example uses delegate set to a script object and that's why both overridden methods get executed when you try to access or modify field defined in a script.
Now let's see what happens when your example reaches closure
{ myField++ }
Firstly, getProperty("myField") is called to return a value associated with this property. This method is implemented as:
public Object getProperty(String property) {
try {
return binding.getVariable(property);
} catch (MissingPropertyException e) {
return super.getProperty(property);
}
}
Source: https://github.com/apache/groovy/blob/GROOVY_2_4_X/src/main/groovy/lang/Script.java#L54
binding object contains only one variable in the beginning - closure's args array. If we take a look at implementation of binding.getVariable(property) method we will see:
public Object getVariable(String name) {
if (variables == null)
throw new MissingPropertyException(name, this.getClass());
Object result = variables.get(name);
if (result == null && !variables.containsKey(name)) {
throw new MissingPropertyException(name, this.getClass());
}
return result;
}
Source: https://github.com/apache/groovy/blob/GROOVY_2_4_X/src/main/groovy/lang/Binding.java#L56
In our case MissingPropertyException is being thrown, so Script.getProperty(property) method returns a value of field myField defined in our Groovy script - 0. Then Groovy increments this value by 1 and tries to set this new value to a field myField. In this case Script.setProperty(property, value) is being called:
public void setProperty(String property, Object newValue) {
if ("binding".equals(property))
setBinding((Binding) newValue);
else if("metaClass".equals(property))
setMetaClass((MetaClass)newValue);
else
binding.setVariable(property, newValue);
}
Source: https://github.com/apache/groovy/blob/GROOVY_2_4_X/src/main/groovy/lang/Script.java#L62
As you can see it sets this new value using bindings object. If we display binding.variables we will see that now this internal map contains two entries: args -> [:] and myField -> 1. It explains why assertion in your script always fails. Body of the closure you have defined never reaches myField field from the script class.
Workaround
If you are not satisfied with the fact that Script class overrides setProperty(property, value) method you can always override it by hand in your script and use same implementation as GroovyObjectSupport.setProperty(property, value). Simply add below method to your Groovy script:
#Override
void setProperty(String property, Object newValue) {
getMetaClass().setProperty(this, property, newValue)
}
Now closure defined in incrementField will set a new value to a class field instead of to a bindings object. Of course it may cause some weird side effects, you have to be aware of that. I hope it helps.
Found a possible solution, using closure delegate:
#groovy.transform.Field def stuff = [
myField : 0
]
incrementField()
assert stuff.myField == 1
def incrementField() {
def body = { myField++ }
body.resolveStrategy = Closure.DELEGATE_FIRST
body.delegate = stuff
1.times body
}

How do I delegate methodMissing calls to nested classes?

I'd like to create a DSL with syntax like:
Graph.make {
foo {
bar()
definedMethod1() // isn't missing!
}
baz()
}
Where when the handler for this tree encounters the outermost closure, it creates an instance of some class, which has some defined methods and also its own handler for missing methods.
I figured this would be easy enough with some structure like:
public class Graph {
def static make(Closure c){
Graph g = new Graph()
c.delegate = g
c()
}
def methodMissing(String name, args){
println "outer " + name
ObjImpl obj = new ObjImpl(type: name)
if(args.length > 0 && args[0] instanceof Closure){
Closure closure = args[0]
closure.delegate = obj
closure()
}
}
class ObjImpl {
String type
def methodMissing(String name, args){
println "inner " + name
}
def definedMethod1(){
println "exec'd known method"
}
}
}
But the methodMissing handler interprets the entire closure inside Graph rather than delegating the inner closure to ObjImpl, yielding output:
outer foo
outer bar
exec'd known method
outer baz
How do I scope the missing method call for the inner closure to the inner object that I create?
The easy answer is to set the inner closure's resolveStrategy to "delegate first", but doing that when the delegate defines a methodMissing to intercept all method calls has the effect of making it impossible to define a method outside the closure and call it from inside, e.g.
def calculateSomething() {
return "something I calculated"
}
Graph.make {
foo {
bar(calculateSomething())
definedMethod1()
}
}
To allow for this sort of pattern it's better to leave all the closures as the default "owner first" resolve strategy, but have the outer methodMissing be aware of when there is an inner closure in progress and hand back down to that:
public class Graph {
def static make(Closure c){
Graph g = new Graph()
c.delegate = g
c()
}
private ObjImpl currentObj = null
def methodMissing(String name, args){
if(currentObj) {
// if we are currently processing an inner ObjImpl closure,
// hand off to that
return currentObj.invokeMethod(name, args)
}
println "outer " + name
if(args.length > 0 && args[0] instanceof Closure){
currentObj = new ObjImpl(type: name)
try {
Closure closure = args[0]
closure()
} finally {
currentObj = null
}
}
}
class ObjImpl {
String type
def methodMissing(String name, args){
println "inner " + name
}
def definedMethod1(){
println "exec'd known method"
}
}
}
With this approach, given the above DSL example, the calculateSomething() call will pass up the chain of owners and reach the method defined in the calling script. The bar(...) and definedMethod1() calls will go up the chain of owners and get a MissingMethodException from the outermost scope, then try the delegate of the outermost closure, ending up in Graph.methodMissing. That will then see that there is a currentObj and pass the method call back down to that, which in turn will end up in ObjImpl.definedMethod1 or ObjImpl.methodMissing as appropriate.
If your DSL can be nested more than two levels deep then you'll need to keep a stack of "current objects" rather than a single reference, but the principle is exactly the same.
An alternative approach might be to make use of groovy.util.BuilderSupport, which is designed for tree building DSLs like yours:
class Graph {
List children
void addChild(ObjImpl child) { ... }
static Graph make(Closure c) {
return new GraphBuilder().build(c)
}
}
class ObjImpl {
List children
void addChild(ObjImpl child) { ... }
String name
void definedMethod1() { ... }
}
class GraphBuilder extends BuilderSupport {
// the various forms of node builder expression, all of which
// can optionally take a closure (which BuilderSupport handles
// for us).
// foo()
public createNode(name) { doCreate(name, [:], null) }
// foo("someValue")
public createNode(name, value) { doCreate(name, [:], value) }
// foo(colour:'red', shape:'circle' [, "someValue"])
public createNode(name, Map attrs, value = null) {
doCreate(name, attrs, value)
}
private doCreate(name, attrs, value) {
if(!current) {
// root is a Graph
return new Graph()
} else {
// all other levels are ObjImpl, but you could change this
// if you need to, conditioning on current.getClass()
def = new ObjImpl(type:name)
current.addChild(newObj)
// possibly do something with attrs ...
return newObj
}
}
/**
* By default BuilderSupport treats all method calls as node
* builder calls. Here we change this so that if the current node
* has a "real" (i.e. not methodMissing) method that matches
* then we call that instead of building a node.
*/
public Object invokeMethod(String name, Object args) {
if(current?.respondsTo(name, args)) {
return current.invokeMethod(name, args)
} else {
return super.invokeMethod(name, args)
}
}
}
The way BuilderSupport works, the builder itself is the closure delegate at all levels of the DSL tree. It calls all its closures with the default "owner first" resolve strategy, which means that you can define a method outside the DSL and call it from inside, e.g.
def calculateSomething() {
return "something I calculated"
}
Graph.make {
foo {
bar(calculateSomething())
definedMethod1()
}
}
but at the same time any calls to methods defined by ObjImpl will be routed to the current object (the foo node in this example).
There are at least two problems with this approach:
Defining ObjImpl within the same context as Graph means that any missingMethod call will hit Graph first
Delegation appears to happen locally unless a resolveStrategy is set, e.g.:
closure.resolveStrategy = Closure.DELEGATE_FIRST

In groovy, is there a way to check if an object has a given method?

Assuming that I have an object someObj of indeterminate type, I'd like to do something like:
def value = someObj.someMethod()
Where there's no guarantee that 'someObj' implements the someMethod() method, and if it doesn't, just return null.
Is there anything like that in Groovy, or do I need to wrap that in an if-statement with an instanceof check?
Use respondsTo
class Foo {
String prop
def bar() { "bar" }
def bar(String name) { "bar $name" }
}
def f = new Foo()
// Does f have a no-arg bar method
if (f.metaClass.respondsTo(f, "bar")) {
// do stuff
}
// Does f have a bar method that takes a String param
if (f.metaClass.respondsTo(f, "bar", String)) {
// do stuff
}
Just implement methodMissing in your class:
class Foo {
def methodMissing(String name, args) { return null; }
}
And then, every time you try to invoke a method that doesn't exist, you will get a null value.
def foo = new Foo();
assert foo.someMethod(), null
For more information, take a look here: http://groovy.codehaus.org/Using+methodMissing+and+propertyMissing
You should be able to do something like:
SomeObj.metaClass.getMetaMethod("someMethod")
Or you can fall back to the good old Java reflection API.
You can achieve this by using getMetaMethod together with the safe navigation operator ?.:
def str = "foo"
def num = 42
def methodName = "length"
def args = [] as Object[]
assert 3 == str.metaClass.getMetaMethod(methodName, args)?.invoke(str, args);
assert null == num.metaClass.getMetaMethod(methodName, args)?.invoke(num, args);
if class :
MyClass.metaClass.methods*.name.any{it=='myMethod'}//true if exist
if object :
myObj.class.metaClass.methods*.name.any{it=='myMethod'}//true if exist
In very concise way you can use this:
if(someObj.&methodName){
//it means someObj has the method
}

Resources