Knuth–Morris–Pratt algorithm: border array - string

Here is a pseudo code for computing the border array in KMP.
p is the pattern
border[1]:=-1
i:=border[1]
for j=2,...,m
while i >= 0 and p[i+1] != p[j-1] do i = border[i+1]
i++
border[j]:=i
I can execute the following pseudo code to compute the border array but the problem I am having right now is that I don't really understand the border array meaning how to interpret it.
For instance if the pattern does not equal at position (i+1) and (j-1) the variable i is set to border[i+1]. Why is that for example?
I realized the missing understanding when I tried to answer the question that three consecutive entries in a border array cannot differ by one from its predecessor. E.g. border[10]=3, border[11]=2, border[12]=1
I would appreciate a good explanation in order to get a better understanding.

What you call the border array is the prefix function.
There are many explanations, see Stackoverflow, Wikipedia, or just google an explanation more suitable for you.
As for the second part of your question, the following string is an example for the property you ask for:
column: 0123456
string: abcabac
border: 0001210
Here, border[4] = 2 because ab = ab, border[5] = 1 because a = a, and border[6] = 0.
Whether all three values can be non-zero (for example, 3, 2, 1) is an interesting question.

Related

How to match a geometric template of 2D boxes to fit another set of 2D boxes

I'm trying to find a match between a set of 2D boxes with coordinates (A) (from a template with known sizes and distances between boxes) to another set of 2D boxes with coordinates (B) (which may contain more boxes than A). They should match in terms of each box from A corresponds to a single Box in B. The boxes in A together form a "stamp" which is assymmetrical in atleast one dimension.
Illustration of problem
explanation: "Stanz" in the illustration is a box from set A.
One might even think of the Set A as only 2D points (the centerpoint of the box) to make it simpler.
The end result will be to know which A box corresponds to which B box.
I can only think of very specific ways of doing this, tailored to a specific layout of boxes, is there any known generic ways of dealing with this forms of matching/search problems and what are they called?
Edit: Possible solution
I have come up with one possible solution, looking for all the possible rotations at each possible B center position for a single box from set A. Here all of the points in A would be rotated and compared against the distance to B centers. Not sure if this is a good way.
Looking for the possible rotations at each B centerpoint- solution
In your example, the transformation between the template and its presence in B can be entirely defined (actually, over-defined) by two matching points.
So here's a simple approach which is kind of performant. First, put all the points in B into a kD-tree. Now, pick a canonical "first" point in A, and hypothesize matching it to each of the points in B. To check whether it matches a particular point in B, pick a canonical "second" point in A and measure its distance to the "first" point. Then, use a standard kD proximity-bounding query to find all the points in B which are roughly that distance from your hypothesized matched "first" point in B. For each of those, determine the transformation between A and B, and for each of the other points in A, determine whether there's a point in A at roughly the right place (again, using the kD-tree), early-outing with the first unmatched point.
The worst-case performance there can get quite bad with pathological cases (O(n^3 log n), I think) but in general I would expect roughly O(n log n) for well-behaved data with a low threshold. Note that the thresholding is a bit rough-and-ready, and the results can depend on your choice of "first" and "second" points.
This is more of an idea than an answer, but it's too long for a comment. I asked some additional questions in a comment above, but the answers may not be particular relevant, so I'll go ahead and offer some thoughts in the meantime.
As you may know, point matching is its own problem domain, and if you search for 'point matching algorithm', you'll find various articles, papers, and other resources. It seems though that an ad hoc solution might be appropriate here (one that's simpler than more generic algorithms that are available).
I'll assume that the input point set can only be rotated, and not also flipped. If this idea were to work though, it should also work with flipping - you'd just have to run the algorithm separately for each flipped configuration.
In your example image, you've matched a point from set A with a point from set B so that they're coincident. Call this shared point the 'anchor' point. You'd need to do this for every combination of a point from set A and a point from set B until you found a match or exhausted the possibilities. The problem then is to determine if a match can be made given one of these matched point pairs.
It seems that for a given anchor point, a necessary but not sufficient condition for a match is that a point from set A and a point from set B can be found that are approximately the same distance from the anchor point. (What 'approximately' means would depend on the input, and would need to be tuned appropriately given that you're using integers.) This condition is met in your example image in that the center point of each point set is (approximately) the same distance from the anchor point. (Note that there could be multiple pairs of points that meet this condition, in which case you'd have to examine each such pair in turn.)
Once you have such a pair - the center points in your example - you can use some simple trigonometry and linear algebra to rotate set A so that the points in the pair coincide, after which the two point sets are locked together at two points and not just one. In your image that would involve rotating set A about 135 degrees clockwise. Then you check to see if every point in set B has a point in set A with which it's coincident, to within some threshold. If so, you have a match.
In your example, this fails of course, because the rotation is not actually a match. Eventually though, if there's a match, you'll find the anchor point pair for which the test succeeds.
I realize this would be easier to explain with some diagrams, but I'm afraid this written explanation will have to suffice for the moment. I'm not positive this would work - it's just an idea. And maybe a more generic algorithm would be preferable. But, if this did work, it might have the advantage of being fairly straightforward to implement.
[Edit: Perhaps I should add that this is similar to your solution, except for the additional step to allow for only testing a subset of the possible rotations.]
[Edit: I think a further refinement may be possible here. If, after choosing an anchor point, matching is possible via rotation, it should be the case that for every point p in B there's a point in A that's (approximately) the same distance from the anchor point as p is. Again, it's a necessary but not sufficient condition, but it allows you to quickly eliminate cases where a match isn't possible via rotation.]
Below follows a finished solution in python without kD-tree and without early outing candidates. A better way is to do the implementation yourself according to Sneftel but if you need anything quick and with a plot this might be useful.
Plot shows the different steps, starts off with just the template as a collection of connected lines. Then it is translated to a point in B where the distances between A and B points fits the best. Finally it is rotated.
In this example it was important to also match up which of the template positions was matched to which boundingbox position, so its an extra step in the end. There might be some deviations in the code compared to the outline above.
import numpy as np
import random
import math
import matplotlib.pyplot as plt
def to_polar(pos_array):
x = pos_array[:, 0]
y = pos_array[:, 1]
length = np.sqrt(x ** 2 + y ** 2)
t = np.arctan2(y, x)
zip_list = list(zip(length, t))
array_polar = np.array(zip_list)
return array_polar
def to_cartesian(pos):
# first element radius
# second is angle(theta)
# Converting polar to cartesian coordinates
radius = pos[0]
theta = pos[1]
x = radius * math.cos(theta)
y = radius * math.sin(theta)
return x,y
def calculate_distance_points(p1,p2):
return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
def find_closest_point_inx(point, neighbour_set):
shortest_dist = None
closest_index = -1
# Find the point in the secondary array that is the closest
for index,curr_neighbour in enumerate(neighbour_set):
distance = calculate_distance_points(point, curr_neighbour)
if shortest_dist is None or distance < shortest_dist:
shortest_dist = distance
closest_index = index
return closest_index
# Find the sum of distances between each point in primary to the closest one in secondary
def calculate_agg_distance_arrs(primary,secondary):
total_distance = 0
for point in primary:
closest_inx = find_closest_point_inx(point, secondary)
dist = calculate_distance_points(point, secondary[closest_inx])
total_distance += dist
return total_distance
# returns a set of <primary_index,neighbour_index>
def pair_neighbours_by_distance(primary_set, neighbour_set, distance_limit):
pairs = {}
for num, point in enumerate(primary_set):
closest_inx = find_closest_point_inx(point, neighbour_set)
if calculate_distance_points(neighbour_set[closest_inx], point) > distance_limit:
closest_inx = None
pairs[num]=closest_inx
return pairs
def rotate_array(array, angle,rot_origin=None):
if rot_origin is not None:
array = np.subtract(array,rot_origin)
# clockwise rotation
theta = np.radians(angle)
c, s = np.cos(theta), np.sin(theta)
R = np.array(((c, -s), (s, c)))
rotated = np.matmul(array, R)
if rot_origin is not None:
rotated = np.add(rotated,rot_origin)
return rotated
# Finds out a point in B_set and a rotation where the points in SetA have the best alignment towards SetB.
def find_stamp_rotation(A_set, B_set):
# Step 1
anchor_point_A = A_set[0]
# Step 2. Convert all points to polar coordinates with anchor as origin
A_anchor_origin = A_set - anchor_point_A
anchor_A_polar = to_polar(A_anchor_origin)
print(anchor_A_polar)
# Step 3 for each point in B
score_tuples = []
for num_anchor, B_anchor_point_try in enumerate(B_set):
# Step 3.1
B_origin_rel_point = B_set-B_anchor_point_try
B_polar_rp_origin = to_polar(B_origin_rel_point)
# Step 3.3 select arbitrary point q from Ap
point_Aq = anchor_A_polar[1]
# Step 3.4 test each rotation, where pointAq is rotated to each B-point (except the B anchor point)
for try_rot_point_B in [B_rot_point for num_rot, B_rot_point in enumerate(B_polar_rp_origin) if num_rot != num_anchor]:
# positive rotation is clockwise
# Step 4.1 Rotate Ap by the angle between q and n
angle_to_try = try_rot_point_B[1]-point_Aq[1]
rot_try_arr = np.copy(anchor_A_polar)
rot_try_arr[:,1]+=angle_to_try
cart_rot_try_arr = [to_cartesian(e) for e in rot_try_arr]
cart_B_rp_origin = [to_cartesian(e) for e in B_polar_rp_origin]
distance_score = calculate_agg_distance_arrs(cart_rot_try_arr, cart_B_rp_origin)
score_tuples.append((B_anchor_point_try,angle_to_try,distance_score))
# Step 4.3
lowest=None
for b_point,angle,distance in score_tuples:
print("point:{} angle(rad):{} distance(sum):{}".format(b_point,360*(angle/(2*math.pi)),distance))
if lowest is None or distance < lowest[2]:
lowest = b_point, 360*angle/(2*math.pi), distance
return lowest
def test_example():
ax = plt.subplot()
ax.grid(True)
plt.title('Fit Template to BBoxes by translation and rotation')
plt.xlim(-20, 20)
plt.ylim(-20, 20)
ax.set_xticks(range(-20,20), minor=True)
ax.set_yticks(range(-20,20), minor=True)
template = np.array([[-10,-10],[-10,10],[0,0],[10,-10],[10,10], [0,20]])
# Test Bboxes are Rotated 40 degree, translated 2,2
rotated = rotate_array(template,40)
rotated = np.subtract(rotated,[2,2])
# Adds some extra bounding boxes as noise
for i in range(8):
rotated = np.append(rotated,[[random.randrange(-20,20), random.randrange(-20,20)]],axis=0)
# Scramble entries in array and return the position change.
rnd_rotated = rotated.copy()
np.random.shuffle(rnd_rotated)
element_positions = []
# After shuffling, looks at which index the "A"-marks has ended up at. For later comparison to see that the algo found the correct answer.
# This is to represent the actual case, where I will get a bunch of unordered bboxes.
rnd_map = {}
indexes_translation = [num2 for num,point in enumerate(rnd_rotated) for num2,point2 in enumerate(rotated) if point[0]==point2[0] and point[1]==point2[1]]
for num,inx in enumerate(indexes_translation):
rnd_map[num]=inx
# algo part 1/3
b_point,angle,_ = find_stamp_rotation(template,rnd_rotated)
# Plot for visualization
legend_list = np.empty((0,2))
leg_template = plt.plot(template[:,0],template[:,1],c='r')
legend_list = np.append(legend_list,[[leg_template[0],'1. template-pattern']],axis=0)
leg_bboxes = plt.scatter(rnd_rotated[:,0],rnd_rotated[:,1],c='b',label="scatter")
legend_list = np.append(legend_list,[[leg_bboxes,'2. bounding boxes']],axis=0)
leg_anchor = plt.scatter(b_point[0],b_point[1],c='y')
legend_list = np.append(legend_list,[[leg_anchor,'3. Discovered bbox anchor point']],axis=0)
# algo part 2/3
# Superimpose A onto B by A[0] to b_point
offset = b_point - template[0]
super_imposed_A = template + offset
# Plot superimposed, but not yet rotated
leg_s_imposed = plt.plot(super_imposed_A[:,0],super_imposed_A[:,1],c='k')
#plt.legend(rubberduckz, "superimposed template on anchor")
legend_list = np.append(legend_list,[[leg_s_imposed[0],'4. Templ superimposed on Bbox']],axis=0)
print("Superimposed A on B by A[0] to {}".format(b_point))
print(super_imposed_A)
# Rotate, now the template should match pattern of bboxes
# algo part 3/4
super_imposed_rotated_A = rotate_array(super_imposed_A,-angle,rot_origin=super_imposed_A[0])
# Show the beautiful match in a last plot
leg_s_imp_rot = plt.plot(super_imposed_rotated_A[:,0],super_imposed_rotated_A[:,1],c='g')
legend_list = np.append(legend_list,[[leg_s_imp_rot[0],'5. final fit']],axis=0)
plt.legend(legend_list[:,0], legend_list[:,1],loc="upper left")
plt.show()
# algo part 4/4
pairs = pair_neighbours_by_distance(super_imposed_rotated_A, rnd_rotated, 10)
print(pairs)
for inx in range(len(pairs)):
bbox_num = pairs[inx]
print("template id:{}".format(inx))
print("bbox#id:{}".format(bbox_num))
#print("original_bbox:{}".format(rnd_map[bbox_num]))
if __name__ == "__main__":
test_example()
Result on actual image with bounding boxes. Here it can be seen that the scaling is incorrect which makes the template a bit off but it will still be able to pair up and thats the desired end-result in my case.

Search and remove algorithm

Say you have an ordered array of values representing x coordinates.
[0,25,50,60,75,100]
You might notice that without the 60, the values would be evenly spaced (25). This would be indicative of a repeating pattern, something that I need to extract using this list (regardless of the length and the values of the list). In this particular example, the algorithm should find and remove the 60.
There are no time or space complexity requirements.
Both the values in the list and the ideal spacing (e.g 25) are unknown. So the algorithm must obtain this by looking at the values. In addition, the number of values, and where the outliers are in the array are not guaranteed. There may be more than one outlier. The algorithm should return a list with the outliers removed. Extra points if the algorithm uses a threshold for the spacing.
Edit: Here is an example image
Here there is one outlier on the x axis. (green-line) There are two on the y axis. The x-coordinates of the array represent the rho of the line on that axis.
arr = [0,25,50,60,75,100]
First construct the distances array
dist = np.array([arr[i+1] - arr[i] for (i, _) in enumerate(arr) if i < len(arr)-1])
print(dist)
>> [25 25 10 15 25]
Now I'm using np.where and np.percentile to cut the array in 3 part: the main , the upper values and the lower values. I arbitrary set them to 5%.
cond_sup = np.where(dist > np.percentile(dist, 95))
print(cond_sup)
>> (array([]),)
cond_inf = np.where(dist < np.percentile(dist, 5))
print(cond_inf)
>> (array([2]),)
You now got indexes where the value is different from the others.
So, dist[2] has a problem, which mean by construction the problem is between arr[2] and arr[2+1]
I don't know if you want to remove 1 or more numbers from this array. So I think the way to solve this problem will be like this:
array A[] = [0,25,50,60,75,100];
sort array (if needed).
create a new array B[] with value i-th: B[i] = A[i+1] - A[i]
find the value of B[] elements that appear most time. It's will be our distance.
find i such that A[i+1]-A[i] != distance
find k (k>i and k min) such that A[i+k]-A[i] == distance
so, we need remove A[i+1] => A[i+k-1]
I hope it is right.

Algorithm to solve Local Alignment

Local alignment between X and Y, with at least one column aligning a C
to a W.
Given two sequences X of length n and Y of length m, we
are looking for a highest-scoring local alignment (i.e., an alignment
between a substring X' of X and a substring Y' of Y) that has at least
one column in which a C from X' is aligned to a W from Y' (if such an
alignment exists). As scoring model, we use a substitution matrix s
and linear gap penalties with parameter d.
Write a code in order to solve the problem efficiently. If you use dynamic
programming, it suffices to give the equations for computing the
entries in the dynamic programming matrices, and to specify where
traceback starts and ends.
My Solution:
I've taken 2 sequences namely, "HCEA" and "HWEA" and tried to solve the question.
Here is my code. Have I fulfilled what is asked in the question? If am wrong kindly tell me where I've gone wrong so that I will modify my code.
Also is there any other way to solve the question? If its available can anyone post a pseudo code or algorithm, so that I'll be able to code for it.
public class Q1 {
public static void main(String[] args) {
// Input Protein Sequences
String seq1 = "HCEA";
String seq2 = "HWEA";
// Array to store the score
int[][] T = new int[seq1.length() + 1][seq2.length() + 1];
// initialize seq1
for (int i = 0; i <= seq1.length(); i++) {
T[i][0] = i;
}
// Initialize seq2
for (int i = 0; i <= seq2.length(); i++) {
T[0][i] = i;
}
// Compute the matrix score
for (int i = 1; i <= seq1.length(); i++) {
for (int j = 1; j <= seq2.length(); j++) {
if ((seq1.charAt(i - 1) == seq2.charAt(j - 1))
|| (seq1.charAt(i - 1) == 'C') && (seq2.charAt(j - 1) == 'W')) {
T[i][j] = T[i - 1][j - 1];
} else {
T[i][j] = Math.min(T[i - 1][j], T[i][j - 1]) + 1;
}
}
}
// Strings to store the aligned sequences
StringBuilder alignedSeq1 = new StringBuilder();
StringBuilder alignedSeq2 = new StringBuilder();
// Build for sequences 1 & 2 from the matrix score
for (int i = seq1.length(), j = seq2.length(); i > 0 || j > 0;) {
if (i > 0 && T[i][j] == T[i - 1][j] + 1) {
alignedSeq1.append(seq1.charAt(--i));
alignedSeq2.append("-");
} else if (j > 0 && T[i][j] == T[i][j - 1] + 1) {
alignedSeq2.append(seq2.charAt(--j));
alignedSeq1.append("-");
} else if (i > 0 && j > 0 && T[i][j] == T[i - 1][j - 1]) {
alignedSeq1.append(seq1.charAt(--i));
alignedSeq2.append(seq2.charAt(--j));
}
}
// Display the aligned sequence
System.out.println(alignedSeq1.reverse().toString());
System.out.println(alignedSeq2.reverse().toString());
}
}
#Shole
The following are the two question and answers provided in my solved worksheet.
Aligning a suffix of X to a prefix of Y
Given two sequences X and Y, we are looking for a highest-scoring alignment between any suffix of X and any prefix of Y. As a scoring model, we use a substitution matrix s and linear gap penalties with parameter d.
Give an efficient algorithm to solve this problem optimally in time O(nm), where n is the length of X and m is the length of Y. If you use a dynamic programming approach, it suffices to give the equations that are needed to compute the dynamic programming matrix, to explain what information is stored for the traceback, and to state where the traceback starts and ends.
Solution:
Let X_i be the prefix of X of length i, and let Y_j denote the prefix of Y of length j. We compute a matrix F such that F[i][j] is the best score of an alignment of any suffix of X_i and the string Y_j. We also compute a traceback matrix P. The computation of F and P can be done in O(nm) time using the following equations:
F[0][0]=0
for i = 1..n: F[i][0]=0
for j = 1..m: F[0][j]=-j*d, P[0][j]=L
for i = 1..n, j = 1..m:
F[i][j] = max{ F[i-1][j-1]+s(X[i-1],Y[j-1]), F[i-1][j]-d, F[i][j-1]-d }
P[i][j] = D, T or L according to which of the three expressions above is the maximum
Once we have computed F and P, we find the largest value in the bottom row of the matrix F. Let F[n][j0] be that largest value. We start traceback at F[n][j0] and continue traceback until we hit the first column of the matrix. The alignment constructed in this way is the solution.
Aligning Y to a substring of X, without gaps in Y
Given a string X of length n and a string Y of length m, we want to compute a highest-scoring alignment of Y to any substring of X, with the extra constraint that we are not allowed to insert any gaps into Y. In other words, the output is an alignment of a substring X' of X with the string Y, such that the score of the alignment is the largest possible (among all choices of X') and such that the alignment does not introduce any gaps into Y (but may introduce gaps into X'). As a scoring model, we use again a substitution matrix s and linear gap penalties with parameter d.
Give an efficient dynamic programming algorithm that solves this problem optimally in polynomial time. It suffices to give the equations that are needed to compute the dynamic programming matrix, to explain what information is stored for the traceback, and to state where the traceback starts and ends. What is the running-time of your algorithm?
Solution:
Let X_i be the prefix of X of length i, and let Y_j denote the prefix of Y of length j. We compute a matrix F such that F[i][j] is the best score of an alignment of any suffix of X_i and the string Y_j, such that the alignment does not insert gaps in Y. We also compute a traceback matrix P. The computation of F and P can be done in O(nm) time using the following equations:
F[0][0]=0
for i = 1..n: F[i][0]=0
for j = 1..m: F[0][j]=-j*d, P[0][j]=L
for i = 1..n, j = 1..m:
F[i][j] = max{ F[i-1][j-1]+s(X[i-1],Y[j-1]), F[i][j-1]-d }
P[i][j] = D or L according to which of the two expressions above is the maximum
Once we have computed F and P, we find the largest value in the rightmost column of the matrix F. Let F[i0][m] be that largest value. We start traceback at F[i0][m] and continue traceback until we hit the first column of the matrix. The alignment constructed in this way is the solution.
Hope you get some idea about wot i really need.
I think it's quite easy to find resources or even the answer by google...as the first result of the searching is already a thorough DP solution.
However, I appreciate that you would like to think over the solution by yourself and are requesting some hints.
Before I give out some of the hints, I would like to say something about designing a DP solution
(I assume you know this can be solved by a DP solution)
A dp solution basically consisting of four parts:
1. DP state, you have to self define the physical meaning of one state, eg:
a[i] := the money the i-th person have;
a[i][j] := the number of TV programmes between time i and time j; etc
2. Transition equations
3. Initial state / base case
4. how to query the answer, eg: is the answer a[n]? or is the answer max(a[i])?
Just some 2 cents on a DP solution, let's go back to the question :)
Here's are some hints I am able to think of:
What is the dp state? How many dimensions are enough to define such a state?
Thinking of you are solving problems much alike to common substring problem (on 2 strings),
1-dimension seems too little and 3-dimensions seems too many right?
As mentioned in point 1, this problem is very similar to common substring problem, maybe you should have a look on these problems to get yourself some idea?
LCS, LIS, Edit Distance, etc.
Supplement part: not directly related to the OP
DP is easy to learn, but hard to master. I know a very little about it, really cannot share much. I think "Introduction to algorithm" is a quite standard book to start with, you can find many resources, especially some ppt/ pdf tutorials of some colleges / universities to learn some basic examples of DP.(Learn these examples is useful and I'll explain below)
A problem can be solved by many different DP solutions, some of them are much better (less time / space complexity) due to a well-defined DP state.
So how to design a better DP state or even get the sense that one problem can be solved by DP? I would say it's a matter of experiences and knowledge. There are a set of "well-known" DP problems which I would say many other DP problems can be solved by modifying a bit of them. Here is a post I just got accepted about another DP problem, as stated in that post, that problem is very similar to a "well-known" problem named "matrix chain multiplication". So, you cannot do much about the "experience" part as it has no express way, yet you can work on the "knowledge" part by studying these standard DP problems first maybe?
Lastly, let's go back to your original question to illustrate my point of view:
As I knew LCS problem before, I have a sense that for similar problem, I may be able to solve it by designing similar DP state and transition equation? The state s(i,j):= The optimal cost for A(1..i) and B(1..j), given two strings A & B
What is "optimal" depends on the question, and how to achieve this "optimal" value in each state is done by the transition equation.
With this state defined, it's easy to see the final answer I would like to query is simply s(len(A), len(B)).
Base case? s(0,0) = 0 ! We can't really do much on two empty string right?
So with the knowledge I got, I have a rough thought on the 4 main components of designing a DP solution. I know it's a bit long but I hope it helps, cheers.

counting results from a defined matrix

So I am very new to programming and Haskell is the first language that I'm learning. The problem I'm having is probably a very simple one but I simply can not find an answer, no matter how much I search.
So basically what I have is a 3x3-Matrix and each of the elements has a number from 1 to 3. This Matrix is predefined, now all I need to do is create a function which when I input 1, 2 or 3 tells me how many elements there are in this matrix with this value.
I've been trying around with different things but none of them appear to be allowed, for example I've defined 3 variables for each of the possible numbers and tried to define them by
value w =
let a=0
b=0
c=0
in
if matrix 1 1==1 then a=a+1 else if matrix 1 1==2 then b=b+1
etc. etc. for every combination and field.
<- ignoring the wrong syntax which I'm really struggling with, the fact that I can't use a "=" with "if, then" is my biggest problem. Is there a way to bypass this or maybe a way to use "stored data" from previously defined functions?
I hope I made my question somewhat clear, as I said I've only been at programming for 2 days now and I just can't seem to find a way to make this work!
By default, Haskell doesn't use updateable variables. Instead, you typically make a new value, and pass it somewhere else (e.g., return it from a function, add it into a list, etc).
I would approach this in two steps: get a list of the elements from your matrix, then count the elements with each value.
-- get list of elements using list comprehension
elements = [matrix i j | i <- [1..3], j <- [1..3]]
-- define counting function
count (x,y,z) (1:tail) = count (x+1,y,z) tail
count (x,y,z) (2:tail) = count (x,y+1,z) tail
count (x,y,z) (3:tail) = count (x,y,z+1) tail
count scores [] = scores
-- use counting function
(a,b,c) = count (0,0,0) elements
There are better ways of accumulating scores, but this seems closest to what your question is looking for.
Per comments below, an example of a more idiomatic counting method, using foldl and an accumulation function addscore instead of the count function above:
-- define accumulation function
addscore (x,y,z) 1 = (x+1,y,z)
addscore (x,y,z) 2 = (x,y+1,z)
addscore (x,y,z) 3 = (x,y,z+1)
-- use accumulation function
(a,b,c) = foldl addscore (0,0,0) elements

How do I find the RGBA value of a color from two RGB values?

I have a hunch this has been done before but I am a total layman at this and don't know how to begin to ask the right question. So I will describe what I am trying to do...
I have an unknown ARGB color. I only know its absolute RGB value as displayed over two known opaque background colors, for example black 0x000000 and white 0xFFFFFF. So, to continue the example, if I know that the ARGB color is RGB 0x000080 equivalent when displayed over 0x000000 and I know that the same ARGB color is RGB 0x7F7FFF equivalent when displayed over 0xFFFFFF, is there a way to compute what the original ARGB color is?
Or is this even possible???
So, you know that putting (a,r,g,b) over (r1,g1,b1) gives you (R1,G1,B1) and that putting it over (r2,g2,b2) gives you (R2,G2,B2). In other words -- incidentally I'm going to work here in units where a ranges from 0 to 1 -- you know (1-a)r1+ar=R1, (1-a)r2+ar=R2, etc. Take those two and subtract: you get (1-a)(r1-r2)=R1-R2 and hence a=1-(R1-R2)/(r1-r2). Once you know a, you can work everything else out.
You should actually compute the values of a you get from doing that calculation on all three of {R,G,B} and average them or something, to reduce the effects of roundoff error. In fact I'd recommend that you take a = 1 - [(R1-R2)sign(r1-r2) + (G1-G2)sign(g1-g2) + (B1-B2)sign(b1-b2)] / (|r1-r2|+|g1-g2|+|b1-b2), which amounts to weighting the more reliable colours more highly.
Now you have, e.g., r = (R1-(1-a)r1)/a = (R2-(1-a)r2)/a. These two would be equal if you had infinite-precision values for a,r,g,b, but of course in practice they may differ slightly. Average them: r = [(R1+R2)-(1-a)(r1+r2)]/2a.
If your value of a happens to be very small then you'll get only rather unreliable information about r,g,b. (In the limit where a=0 you'll get no information at all, and there's obviously nothing you can do about that.) It's possible that you may get numbers outside the range 0..255, in which case I don't think you can do better than just clipping.
Here's how it works out for your particular example. (r1,g1,b1)=(0,0,0); (r2,g2,b2)=(255,255,255); (R1,G1,B1)=(0,0,128); (R2,G2,B2)=(127,127,255). So a = 1 - [127+127+127]/[255+255+255] = 128/255, which happens to be one of the 256 actually-possible values of a. (If it weren't, we should probably round it at this stage.)
Now r = (127-255*127/255)*255/256 = 0; likewise g = 0; and b = (383-255*127/255)*255/256 = 255.
So our ARGB colour was 80,00,00,FF.
Choosing black and white as the background colors is the best choice, both for ease of calculation and accuracy of result. With lots of abuse of notation....
a(RGB) + (1-a)0xFFFFFF = 0x7F7FFF
a(RGB) + (1-a)0x000000 = 0x000080
Subtracting the second from the first...
(1-a)0xFFFFFF = 0x7F7FFF-0x000080 = 0x7F7F7F
So
(1-a) = 0x7F/0xFF
a = (0xFF-0x7F)/0xFF = 0x80/0xFF
A = 0x80
and RGB = (a(RGB))/a = 0x000080/a = 0x0000FF
You can do something very similar with other choices of background color. The smaller a is and the closer the two background colors are the less accurately you will be able to determine the RGBA value. Consider the extreme cases where A=0 or where the two background colors are the same.

Resources