Speech to Text Method Using Python - python-3.x

Good day. I am currently working on Machine Translation (Speech-(Text--Text)-Speech) with our local dialects and I already have the speech and text corpus. However, I am facing a problem in recording the speech as input and transcribing it to a text file because the modules available for speech recognition did not cover our dialects, mostly it just supports English and other major languages.
Is there anyone who know how I can fix it? I would be honored to accept your valuable suggestions and it will help me a lot on my studies. Thanks!

To work on text-to-speech for unusual dialects is a big challenge since frequently the audio models do not exist and have to be created from scratch. A good place to start is with one of the tutorials from http://voxforge.org. At this site you will find not only the tutorials involving a number of audio decoders and model generators but also a useful forum where students of various languages other than English have found solutions related to their own dialect problems.
A general plan might be as follows: build a simple English model following the examples given to get used to the terminology and concepts and process involved. Given your inevitable success with English, you can then turn your possession of a native corpus to advantage by building models for your own dialect. It is a reasonable goal and has been done many times before. Be warned however that to get good recognition across a broad vocabulary you will need a very comprehensive corpus data set.

Related

Elementary Sentence Construction

I am working in NLP Project and I am looking for parser to construct simple Sentences from complex one, written in C# . Since Sentences may have complex grammatical structure with multiple embedded clauses.
Any Help ?
Text summarisation and sentence simplification are very much an open research area. Wikipedia has articles about both, you can start from there. Beware: this is hard problem and chances are the state of the art system is far worse than you might expect. There isn't an off-the-shelf piece of software that you can just grab and solve all your problems. You will have some success with the more basic sentences, but performance will degrade as you complex sentence gets more complex. Have a look at the articles referenced on Wikipedia or google around to get an idea of what is possible. My impression is most readily available software packages are for academic purposes and might take a bit of work to get running.

Generating questions from text (NLP)

What approaches are there to generating question from a sentence? Let's say I have a sentence "Jim's dog was very hairy and smelled like wet newspaper" - which toolkit is capable of generating a question like "What did Jim's dog smelled like?" or "How hairy was Jim's dog?"
Thanks!
Unfortunately there isn't one, exactly. There is some code written as part of Michael Heilman's PhD dissertation at CMU; perhaps you'll find it and its corresponding papers interesting?
If it helps, the topic you want information on is called "question generation". This is pretty much the opposite of what Watson does, even though "here is an answer, generate the corresponding question" is exactly how Jeopardy is played. But actually, Watson is a "question answering" system.
In addition to the link to Michael Heilman's PhD provided by dmn, I recommend checking out the following papers:
Automatic Question Generation and Answer Judging: A Q&A Game for Language Learning (Yushi Xu, Anna Goldie, Stephanie Seneff)
Automatic Question Generationg from Sentences (Husam Ali, Yllias Chali, Sadid A. Hasan)
As of 2022, Haystack provides a comprehensive suite of tools to accomplish the purpose of Question generation and answering using the latest and greatest Transformer models and Transfer learning.
From their website,
Haystack is an open-source framework for building search systems that work intelligently over large document collections. Recent advances in NLP have enabled the application of question answering, retrieval and summarization to real world settings and Haystack is designed to be the bridge between research and industry.
NLP for Search: Pick components that perform retrieval, question answering, reranking and much more
Latest models: Utilize all transformer based models (BERT, RoBERTa, MiniLM, DPR) and smoothly switch when new ones get published
Flexible databases: Load data into and query from a range of databases such as Elasticsearch, Milvus, FAISS, SQL and more
Scalability: Scale your system to handle millions of documents and deploy them via REST API
Domain adaptation: All tooling you need to annotate examples, collect user-feedback, evaluate components and finetune models.
Based on my personal experience, I am 95% successful in generating Questions and Answers in my Internship for training purposes. I have a sample web user interface to demonstrate and the code too. My Web App and Code.
Huge shoutout to the developers on the Slack channel for helping noobs in AI like me! Implementing and deploying a NLP model has never been easier if not for Haystack. I believe this is the only tool out there where one can easily develop and deploy.
Disclaimer: I do not work for deepset.ai or Haystack, am just a fan of haystack.
As of 2019, Question generation from text has become possible. There are several research papers for this task.
The current state-of-the-art question generation model uses language modeling with different pretraining objectives. Research paper, code implementation and pre-trained model are available to download on the Paperwithcode website link.
This model can be used to fine-tune on your own dataset (instructions for finetuning are given here).
I would suggest checking out this link for more solutions. I hope it helps.

Analysing meaning of sentences

Are there any tools that analyze the meaning of given sentences? Recommendations are greatly appreciated.
Thanks in advance!
I am also looking for similar tools. One thing I found recently was this sentiment analysis tool built by researchers at Stanford.
It provides a model of analyzing the sentiment of a given sentence. It's interesting and even this seemingly simple idea is quite involved to model in an accurate way. It utilizes machine learning to develop higher accuracy as well. There is a live demo where you can input sentences to analyze.
http://nlp.stanford.edu/sentiment/
I also saw this RelEx semantic dependency relationship extractor.
http://wiki.opencog.org/w/Sentence_algorithms
Some natural language understanding tools can analyze the meaning of sentences, including NLTK and Attempto Controlled English. There are several implementations of discourse representation structures and semantic parsers with a similar purpose.
There are also several parsers that can be used to generate a meaning representation from the text that is being parsed.

Simple toolkits for emotion (sentiment) analysis (not using machine learning)

I am looking for a tool that can analyze the emotion of short texts. I searched for a week and I couldn't find a good one that is publicly available. The ideal tool is one that takes a short text as input and guesses the emotion. It is preferably a standalone application or library.
I don't need tools that is trained by texts. And although similar questions are asked before no satisfactory answers are got.
I searched the Internet and read some papers but I can't find a good tool I want. Currently I found SentiStrength, but the accuracy is not good. I am using emotional dictionaries right now. I felt that some syntax parsing may be necessary but it's too complex for me to build one. Furthermore, it's researched by some people and I don't want to reinvent the wheels. Does anyone know such publicly/research available software? I need a tool that doesn't need training before using.
Thanks in advance.
I think that you will not find a more accurate program than SentiStrength (or SoCal) for this task - other than machine learning methods in a specific narrow domain. If you have a lot (>1000) of hand-coded data for a specific domain then you might like to try a generic machine learning approach based on your data. If not, then I would stop looking for anything better ;)
Identifying entities and extracting precise information from short texts, let alone sentiment, is a very challenging problem specially with short text because of lack of context. Hovewer, there are few unsupervised approaches to extracting sentiments from texts mainly proposed by Turney (2000). Look at that and may be you can adopt the method of extracting sentiments based on adjectives in the short text for your use-case. It is hovewer important to note that this might require you to efficiently POSTag your short text accordingly.
Maybe EmoLib could be of help.

Natural Language Processing Package

I have started working on a project which requires Natural Language Processing. We have do the spell checking as well as mapping sentences to phrases and their synonyms. I first thought of using GATE but i am confused on what to use? I found an interesting post here which got me even more confused.
http://lordpimpington.com/codespeaks/drupal-5.1/?q=node/5
Please help me decide on what suits my purpose the best. I am working a web application which will us this NLP tool as a service.
You didn't really give much info, but try this: http://www.nltk.org/
I don't think NLTK does spell checking (I could be wrong on this), but it can do parts of speech tagging for text input.
For finding/matching synonyms you could use something like WordNet http://wordnet.princeton.edu/
If you're doing something really domain specific: I would recommend coming up with your own ontology for domain specific terms.
If you are using Python you can develop a spell checker with Python Enchant.
NLTK is good for developing Sentiment Analysis system too. I have some prototypes of the same too
Jaggu
If you are using deep learning based models, and if you have sufficient data, you can implement task specific models for any purpose. With the development of deep leaning based languages models, you can used word embedding based models with lexicon resources to obtain synonyms and antonyms. You can also follow the links below to obtain more resources.
https://stanfordnlp.github.io/CoreNLP/
https://www.nltk.org/
https://wordnet.princeton.edu/

Resources