Elementary Sentence Construction - nlp

I am working in NLP Project and I am looking for parser to construct simple Sentences from complex one, written in C# . Since Sentences may have complex grammatical structure with multiple embedded clauses.
Any Help ?

Text summarisation and sentence simplification are very much an open research area. Wikipedia has articles about both, you can start from there. Beware: this is hard problem and chances are the state of the art system is far worse than you might expect. There isn't an off-the-shelf piece of software that you can just grab and solve all your problems. You will have some success with the more basic sentences, but performance will degrade as you complex sentence gets more complex. Have a look at the articles referenced on Wikipedia or google around to get an idea of what is possible. My impression is most readily available software packages are for academic purposes and might take a bit of work to get running.

Related

Simple toolkits for emotion (sentiment) analysis (not using machine learning)

I am looking for a tool that can analyze the emotion of short texts. I searched for a week and I couldn't find a good one that is publicly available. The ideal tool is one that takes a short text as input and guesses the emotion. It is preferably a standalone application or library.
I don't need tools that is trained by texts. And although similar questions are asked before no satisfactory answers are got.
I searched the Internet and read some papers but I can't find a good tool I want. Currently I found SentiStrength, but the accuracy is not good. I am using emotional dictionaries right now. I felt that some syntax parsing may be necessary but it's too complex for me to build one. Furthermore, it's researched by some people and I don't want to reinvent the wheels. Does anyone know such publicly/research available software? I need a tool that doesn't need training before using.
Thanks in advance.
I think that you will not find a more accurate program than SentiStrength (or SoCal) for this task - other than machine learning methods in a specific narrow domain. If you have a lot (>1000) of hand-coded data for a specific domain then you might like to try a generic machine learning approach based on your data. If not, then I would stop looking for anything better ;)
Identifying entities and extracting precise information from short texts, let alone sentiment, is a very challenging problem specially with short text because of lack of context. Hovewer, there are few unsupervised approaches to extracting sentiments from texts mainly proposed by Turney (2000). Look at that and may be you can adopt the method of extracting sentiments based on adjectives in the short text for your use-case. It is hovewer important to note that this might require you to efficiently POSTag your short text accordingly.
Maybe EmoLib could be of help.

NLP: Language Analysis Techniques and Algorithms

Situation:
I wish to perform a Deep-level Analysis of a given text, which would mean:
Ability to extract keywords and assign importance levels based on contextual usage.
Ability to draw conclusions on the mood expressed.
Ability to hint on the education level (word does this a little bit though, but something more automated)
Ability to mix-and match phrases and find out certain communication patterns
Ability to draw substantial meaning out of it, so that it can be quantified and can be processed for answering by a machine.
Question:
What kind of algorithms and techniques need to be employed for this?
Is there a software that can help me in doing this?
When you figure out how to do this please contact DARPA, the CIA, the FBI, and all other U.S. intelligence agencies. Contracts for projects like these are items of current research worth many millions in research grants. ;)
That being said you'll need to process it in layers and analyze at each of those layers. For items 2 and 3 you'll find training an SVM on n-tuples (try, 3) words will help. For 1 and 4 you'll want deeper analysis. Use a tool like NLTK, or one of the many other parsers and find the subject words in sentences and related words. Also use WordNet (from Princeton)
to find the most common senses used and take those as key words.
5 is extremely challenging, I think intelligent use of the data above can give you what you want, but you'll need to use all your grammatical knowledge and programming knowledge, and it will still be very rough grained.
It sounds like you might be open to some experimentation, in which case a toolkit approach might be best? If so, look at the NLTK Natural Language Toolkit for Python. Open source under the Apache license, and there are a couple of excellent books about it (including one from O'Reilly which is also released online under a creative commons license).

How to choose a Feature Selection Algorithm? - advice

Is there a research paper/book that I can read which can tell me for the problem at hand what sort of feature selection algorithm would work best.
I am trying to simply identify twitter messages as pos/neg (to begin with). I started out with Frequency based feature selection (having started with NLTK book) but soon realised that for a similar problem various individuals have choosen different algorithms
Although I can try Frequency based, mutual information, information gain and various other algorithms the list seems endless.. and was wondering if there an efficient way then trial and error.
any advice
Have you tried the book I recommended upon your last question? It's freely available online and entirely about the task you are dealing with: Sentiment Analysis and Opinion Mining by Pang and Lee. Chapter 4 ("Extraction and Classification") is just what you need!
I did an NLP course last term, and it came pretty clear that sentiment analysis is something that nobody really knows how to do well (yet). Doing this with unsupervised learning is of course even harder.
There's quite a lot of research going on regarding this, some of it commercial and thus not open to the public. I can't point you to any research papers but the book we used for the course was this (google books preview). That said, the book covers a lot of material and might not be the quickest way to find a solution to this particular problem.
The only other thing I can point you towards is to try googling around, maybe in scholar.google.com for "sentiment analysis" or "opinion mining".
Have a look at the NLTK movie_reviews corpus. The reviews are already pos/neg categorized and might help you with training your classifier. Although the language you find in Twitter is probably very different from those.
As a last note, please post any successes (or failures for that matter) here. This issue will come up later for sure at some point.
Unfortunately, there is no silver bullet for anything when dealing with machine learning. It's usually referred to as the "No Free Lunch" theorem. Basically a number of algorithms work for a problem, and some do better on some problems and worse on others. Over all, they all perform about the same. The same feature set may cause one algorithm to perform better and another to perform worse for a given data set. For a different data set, the situation could be completely reversed.
Usually what I do is pick a few feature selection algorithms that have worked for others on similar tasks and then start with those. If the performance I get using my favorite classifiers is acceptable, scrounging for another half percentage point probably isn't worth my time. But if it's not acceptable, then it's time to re-evaluate my approach, or to look for more feature selection methods.

What are good starting points for someone interested in natural language processing? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 9 years ago.
Question
So I've recently came up with some new possible projects that would have to deal with deriving 'meaning' from text submitted and generated by users.
Natural language processing is the field that deals with these kinds of issues, and after some initial research I found the OpenNLP Hub and university collaborations like the attempto project. And stackoverflow has this.
If anyone could link me to some good resources, from reseach papers and introductionary texts to apis, I'd be happier than a 6 year-old kid opening his christmas presents!
Update
Through one of your recommendations I've found opencyc ('the world's largest and most complete general knowledge base and commonsense reasoning engine'). Even more amazing still, there's a project that is a distilled version of opencyc called UMBEL. It features semantic data in rdf/owl/skos n3 syntax.
I've also stumbled upon antlr, a parser generator for 'constructing recognizers, interpreters, compilers, and translators from grammatical descriptions'.
And there's a question on here by me, that lists tons of free and open data.
Thanks stackoverflow community!
Tough call, NLP is a much wider field than most people think it is. Basically, language can be split up into several categories, which will require you to learn totally different things.
Before I start, let me tell you that I doubt you'll have any notable success (as a professional, at least) without having a degree in some (closely related) field. There is a lot of theory involved, most of it is dry stuff and hard to learn. You'll need a lot of endurance and most of all: time.
If you're interested in the meaning of text, well, that's the Next Big Thing. Semantic search engines are predicted as initiating Web 3.0, but we're far from 'there' yet. Extracting logic from a text is dependant on several steps:
Tokenization, Chunking
Disambiguation on a lexical level (Time flies like an arrow, but fruit flies like a banana.)
Syntactic Parsing
Morphological analysis (tense, aspect, case, number, whatnot)
A small list, off the top of my head. There's more :-), and many more details to each point. For example, when I say "parsing", what is this? There are many different parsing algorithms, and there are just as many parsing formalisms. Among the most powerful are Tree-adjoining grammar and Head-driven phrase structure grammar. But both of them are hardly used in the field (for now). Usually, you'll be dealing with some half-baked generative approach, and will have to conduct morphological analysis yourself.
Going from there to semantics is a big step. A Syntax/Semantics interface is dependant both, on the syntactic and semantic framework employed, and there is no single working solution yet. On the semantic side, there's classic generative semantics, then there is Discourse Representation Theory, dynamic semantics, and many more. Even the logical formalism everything is based on is still not well-defined. Some say one should use first-order logic, but that hardly seems sufficient; then there is intensional logic, as used by Montague, but that seems overly complex, and computationally unfeasible. There also is dynamic logic (Groenendijk and Stokhof have pioneered this stuff. Great stuff!) and very recently, this summer actually, Jeroen Groenendijk presented a new formalism, Inquisitive Semantics, also very interesting.
If you want to get started on a very simple level, read Blackburn and Bos (2005), it's great stuff, and the de-facto introduction to Computational Semantics! I recently extended their system to cover the partition-theory of questions (question answering is a beast!), as proposed by Groenendijk and Stokhof (1982), but unfortunately, the theory has a complexity of O(n²) over the domain of individuals. While doing so, I found B&B's implementation to be a bit, erhm… hackish, at places. Still, it is going to really, really help you dive into computational semantics, and it is still a very impressive showcase of what can be done. Also, they deserve extra cool-points for implementing a grammar that is settled in Pulp Fiction (the movie).
And while I'm at it, pick up Prolog. A lot of research in computational semantics is based on Prolog. Learn Prolog Now! is a good intro. I can also recommend "The Art of Prolog" and Covington's "Prolog Programming in Depth" and "Natural Language Processing for Prolog Programmers", the former of which is available for free online.
Chomsky is totally the wrong source to look to for NLP (and he'd say as much himself, emphatically)--see: "Statistical Methods and Linguistics" by Abney.
Jurafsky and Martin, mentioned above, is a standard reference, but I myself prefer Manning and Schütze. If you're serious about NLP you'll probably want to read both. There are videos of one of Manning's courses available online.
If you get through Prolog until the DCG chapter in Learn Prolog Now! mentioned by Mr. Dimitrov above, you'll have a good beginning at getting some semantics into your system, since Prolog gives you a very simple way of maintaining a database of knowledge and belief, which can be updated through question-answering.
As regards the literature, I have one major recommendation for you: run out and buy Speech and Language Processing by Jurafsky & Martin. It is pretty much the book on NLP (the first chapter is available online); used in a frillion university courses but also very readable for the non-linguist and practically oriented, while at the same time going fairly deep into the linguistics problems. I really cannot recommend it enough. Chapters 17, 18 and 21 seem to be what you're looking for (14, 15 and 18 in the first edition); they show you simple lambda notation which translates pretty well to Prolog DCG's with features.
Oh, btw, on getting the masters in linguistics; if NL semantics is what you're into, I'd rather recommend taking all the AI-related courses you can find (although any courses on "plain" linguistic semantics, logic, logical semantics, DRT, LFG/HPSG/CCG, NL parsing, formal linguistic theory, etc. wouldn't hurt...)
Reading Chomsky's original literature is not really useful; as far as I know there are no current implementations that directly correspond to his theories, all the useful stuff of his is pretty much subsumed by other theories (and anyone who stays near linguists for any matter of time will absorb knowledge of Chomsky by osmosis).
I'd highly recommend playing around with the NLTK and reading the NLTK Book. The NLTK is very powerful and easy to get into.
You could try reading up a bit on phrase structured grammers, which is basically the mathematics behind much language processessing. It's actually not that heavy, being largely based on set and graph theory. I studied it many moons ago as part of a discrete math course, and I guess there are many good references available at this stage.
Edit:Not as much as I expected on google, although this one looks like a good learning source.
One of the early explorers into NLP is Noam Chomsky; he wrote small books on the subject in the 50s through the 70s. You may find that engaging reading.
Cycorp have a short description of how their Cyc knowledge base derives meaning from sentences.
By utilising a massive knowledge base of common facts, the system can determine the most logical parse of a sentence.
A simpler place to begin with the building blocks is the look at the documentation for a package that attempts to do it. I'd recommend the Python [Natural Language Toolkit (NLTK)1, particularly because of their well-written, free book, which is filled with examples. It won't get you all the way to what you want (which is an AI-hard problem), but it will give you a good footing. NLTK has parsers, chunkers, context-free grammars, and more.
This is really hard stuff. I'd start off by getting at least a Masters in Linguistics, and then work towards my PhD in computer science, concentrating on NLP.
The problem is that most of us don't have the understanding of what language is. And without that understanding, it's bloody tough to implement a solution.
Other comments give some readings, which are probably fine if you want to get started playing around with a small subset of the problem, but in order to come up with a really robust solution, then there are no shortcuts. You need the academic background in both disciplines.
A very enjoyable readable introduction is The Language Instinct by Steven Pinker. It goes into the Chomsky stuff and also tells interesting stories from the evolutionary biology angle. Might be worth starting with something like that before diving into Chomsky's papers and related work, if you're new to the subject.

NLP: Qualitatively "positive" vs "negative" sentence

I need your help in determining the best approach for analyzing industry-specific sentences (i.e. movie reviews) for "positive" vs "negative". I've seen libraries such as OpenNLP before, but it's too low-level - it just gives me the basic sentence composition; what I need is a higher-level structure:
- hopefully with wordlists
- hopefully trainable on my set of data
Thanks!
What you are looking for is commonly dubbed Sentiment Analysis. Typically, sentiment analysis is not able to handle delicate subtleties, like sarcasm or irony, but it fares pretty well if you throw a large set of data at it.
Sentiment analysis usually needs quite a bit of pre-processing. At least tokenization, sentence boundary detection and part-of-speech tagging. Sometimes, syntactic parsing can be important. Doing it properly is an entire branch of research in computational linguistics, and I wouldn't advise you with coming up with your own solution unless you take your time to study the field first.
OpenNLP has some tools to aid sentiment analysis, but if you want something more serious, you should look into the LingPipe toolkit. It has some built-in SA-functionality and a nice tutorial. And you can train it on your own set of data, but don't think that it is entirely trivial :-).
Googling for the term will probably also give you some resources to work with. If you have any more specific question, just ask, I'm watching the nlp-tag closely ;-)
Some approaches to sentiment analysis use strategies popular on other text classification tasks. The most common being transforming your film review into a word vector, and feeding it into a classifier algorithm as training data. Most popular data mining packages can help you here. You could have a look at this tutorial on sentiment classification illustrating how to do an experiment using the open source RapidMiner toolkit.
Incidentally, there is a good data set made available for research purposes related to detecting opinion on film reviews. It is based on IMDB user reviews, and you can check many related research work on the area and how they use the data set.
Its worth bearing in mind that the effectiveness of these methods can only be judged from a statistical viewpoint, so you can pretty much assume there will be misclassifications and cases where opinion is hard to detect. As already noticed in this thread, detecting things like irony and sarcasm can be very difficult indeed.

Resources