Is there a way to delete devices from pubnub app? - pubnub

I am hitting 100 devices limit on PubNub's free plan, but most of those devices are not active. So can I somehow remove them ?

PubNub Daily Active Devices
They are not removable because it is a running count of unique devices per day. The next day, the count starts over. It is likely this is either a mobile app with frequently changing IPs (on the road, like ride share, taxi dispatch, etc) or you are using a host like Heroku or Google App Engine where each execution of PubNub operation (probably a publish), the server host is creating a new dynamic IP address.
If you are using GAE or Heroku or other host/platform/cloud that uses dynamic IPs when it creates a process, then you will continue to see higher than actual IPs (daily active devices). You will want to implement UUID reuse. The new pricing is based on UUIDs now anyways but PubNub will generate a new UUID with every PubNub init so you need to persist a UUID and reuse it (set the UUID on the PubNub instance) so it doesn't over count UUIDs.

Related

android.bluetooth.le changing advertiding data (UUID) periodically

I made an app that advertises an iBeacon. The UUID changes every 30 seconds. Within the UUID is the androidID of the phone and a timestamp. Both are encrypted. My smarthome system decrypts the UUID and gets the timestamp and the androidID.If both are valid the front door opens.
The app creates an UUID and starts advertising, stops after 30 seconds an creates a new one and restarts the advertising. This goes on for ever until the app (running in backround) doesn't get closed.
I wonder if it is possible to change the advertising data (UUID) without stopping and restarting the advertising??
Thanks!
Is starting with AdvertisingSet a solution??
The way to do this is via the setAdvertisingData() method. Calling this in the middle of advertising shouldn't be an issue (as long as you are on API 26 or later). From the Android developer website:-
Set/update data being Advertised. Make sure that data doesn't exceed
the size limit for specified AdvertisingSetParameters. This method
returns immediately, the operation status is delivered through
callback.onAdvertisingDataSet().
Advertising data must be empty if non-legacy scannable advertising is
used. For apps targeting Build.VERSION_CODES#R or lower, this requires
the Manifest.permission#BLUETOOTH_ADMIN permission which can be gained
with a simple manifest tag. For apps targeting
Build.VERSION_CODES#S or or higher, this requires the
Manifest.permission#BLUETOOTH_ADVERTISE permission which can be gained
with Activity.requestPermissions(String[], int). Requires
Manifest.permission.BLUETOOTH_ADVERTISE
Have a look at the links below for more information:-
How do you update the Android BLE advertising data at runtime
Dynamically changing BLE data in Android
BLE advertisements changing in Android

How to scale a nodejs app

In order to predict our exploitation costs, my new associates and I would like to predict our hosting needs.
Our application would be a public one, involving increasing number of users.
We found that, for node.js applications, we basically have 2 options :
As a service, like Heroku
Take a raw server, dedicated or virtual, like OVH here in France
Specifications :
The server would be essentially a backend one, serving ressources "REST-like" over socket.io (with sails.js' implementation sails.io.js)
The usage would basically be, for each user :
Making a search : server taking a "request" (socket event), processing a reasonnable calculation (involing a few maths), returning a reasonnable number (< 1000) of "responses" (socket event), taken from a database, as json
the user would make, say, 3 requests in a raw usage)
Each user would use the application twice a day
In the background, each user would send it's location to the server, still with "REST-like" over socket, say, every minute
Question
I'd just like to know, what basically would be the process to guess the kind of server we have to purchase ? We would like to "scale as we grow" the server, but we still have to make plans, and I can't realy figure out how to predict the need for 10000 users for example.
Would this be about calculating a "per user" server performance unit (Ram, Cpu, "Dyno") and network unit (bandwidth) ?
Thank you very much =)
It's 7 months ago, but as an answer try to use Google Compute Engine, and use the auto scale function to scale use as you go. Node.js works on it and you can install any other packages you need.
Load balancing is handled for you by google as well. You pay extras, but you save a lot of time from research/developing scaling issues.

Number of channels and billing

I am looking at building an app that monitors the public transport buses for a major city:
I did a quick prototype using pubnub. The buses have a phone transmitting gps signals to a channel and bus users have phones subscribed to channels. I have questions:
I am planning for each bus route there is a channel. The city has 50 routes so there will be 50 routes. Does this adhere to the best practice?
Is there an api to list channels ?
I am sending a message to a channel every second. Assume, there are 50 routes with 5 buses each running 24 hours. There will be 216000000 daily messages. what will i be charged for a day?
Does your Android client open a network connection everytime a publish is call? I want to minimize the bandwith used by the phone that is transmitting the GPS signal.
Bus users may want to see location of multiples buses. I know best practice is to subscribe to one public and one private channel. What is the best way to do it?
I would appreciate if you could answer the above questions.
Full disclosure up front - I work for PubNub Customer Success so responses for pricing related questions are informational in nature only and not to be construed as a promotional. Asker specifically mentions PubNub and the information provided below is publicly available from the PubNub website.
Anant, also as an FYI StackOverflow would normally ask that each of these questions gets asked as a separate thread. Moving forward please do your best to adhere to community guidelines.
1 Every implementation will be different as far as the specific architecture and design pattern strategy though your proposed approach seems to be a sensible utilization of channel methodology. PubNub does not limit the total number of channels in use, however as a practical limitation for most mobile development frameworks subscribing to more than 50 channels simultaneously would be around the upper limit. Adding more than that and both iOS and Android will begin exhibiting performance limitations. If new bus lines are added the subscriptions can be managed to only subscribe to nearby routes, etc.
Question 1 the second with the indent. Yes that can be done with the here_now API
2 PubNub charges $1 per million messages (without SSL enabled) so based on your hypothetical your message charges would be $216 per day. That being said, there is significant room here for design pattern optimization so that busses only publish a new location whenever there is a change - repeated publishes while the bus is standing still are unnecessary. This optimization on it's own will bring the message usage figure down significantly, and there are other strategies which can be utilized to further optimize depending on your specific implementation approach. If you anticipate needing more than 1 billion messages per month, a deployment to Global Cloud would make sense so as to avail yourself of volume discount pricing not otherwise available on Go Cloud.
3 Rather than opening a new connection with every publish, PubNub keeps an active socket connection open until unsubscribed or disconnected via loss of network connection/app force close. The bandwidth utilization to keep this connection active over a period of several hours and absent any other publish/subscribe activity typically measures less than 1K depending on your configuration parameters. Android supports background threading so even when the app is not in focus the connection can remain open to facilitate data push alerts which can be used to prompt the user to bring the app back into the foreground to review any updated information.
4 This question is not clear, assuming that the bus locations are published to the public channel what would the purpose of the private channel serve? If you meant a private channel to receive alerts for the arrival of the user's selected bus, then yes that would be an appropriate implementation strategy. Please clarify if you meant something different.

Ping in Azure mobile service

I have channels for push notification. Can I use this adresses for ping user's device? I want to know the count of online users.
The push notification channels could give you a rather rough count of devices that are reachable at a given instant, but it would potentially double-count the same user on multiple devices and it would be the number that receive the notification (roughly), not the number that are in your app at that time.
Keep in mind too that users could turn off notifications, and if you're surfacing toasts or tiles without perceptible value to the user, they're likely to get rather annoyed and potentially uninstall your app.
Analytics providers like Flurry and Localytics might be an option to provide finer granularity and better accuracy on user behavior. Or simply add some code into your own app to provide the level of tracking required; notifications seems like a rather backdoor means to this end.

Peer to Peer: Methods of Finding Peers

Are there any known methods of finding peers without using a dedicated central server?
ie: If I have peers which are disconnecting and reconnecting to the internet but getting a new IP address each time, and I want to connect to them without setting up a dedicated server to register with.
I was thinking about using peers email address to send a manifest of connected peers periodically, with some sort of timecode, negating the need for a dedicated server. This would be a fallback if none of the peers could be connected to after trying all the previously known peer addresses. But existing models of finding peers would be preferable.
There's no way around having to know at least one initial peer to discover more.
Fully P2P protocols, such as Gnutella or Gnutella2, or the simpler Overnet (made famous by Storm Worm), are based on each client having a start-up list of a few peers. These can come off a web-based automated tracker for example. The client will discover the whole network or portions of it by asking other peers for more addresses, for example when delegating a file search.
If you truly can't have any kind of a centralized resource, the best you can do is find the first peer through broadcasted messages and ultimately IP address scanning. The first approach is well-meaning but in at least 98% of cases won't yield any results. The later approach, of course, is abusing the internet, as well as illegal in most countries.
I really would rethink having some kind of a central tracker. It can be something as simple as a PHP script on a webserver (the gnutella network, today, is held up by ten-twenty such scripts, hosted by people who don't even know each other). And this sure is more lightweight than email (which, due to spam filters at the very least, would not work anyway).
In the limited case of peers within an intranet, it is possible to send a broadcast UDP message to a known port asking for peers to report back.
The BitcoinQT client uses a variety of methods to find nodes, some of them might be useful to you.
Satoshi Client Node Discovery
IRC is no longer used, but might be the most easy to implement:
As of version 0.6.x the Bitcoin client no longer uses IRC bootstrapping by default, and as of version 0.8.2 support for IRC bootstrapping has been removed completely. This documentation below is accurate for most prior versions.
In addition to learning and sharing its own address, the node learned about other node addresses via an IRC channel. See irc.cpp.
After learning its own address, a node encoded its own address into a string to be used as a nickname. Then, it randomly joined an IRC channel named between #bitcoin00 and #bitcoin99. Then it issued a WHO command. The thread read the lines as they appeared in the channel and decoded the IP addresses of other nodes in the channel. It did this in a loop, forever, until the node was shutdown.
When the client discovered an address from IRC, it set the timestamp on the address to the current time, but it used a "penalty" of 51 minutes, which means it looked like it was actually seen almost an hour earlier.
Take advantage of any existing forum where data can posted. Think secret IRC channel, embedding data in photos and posting to photo sharing sites 4chan?, any site that would allow your application to login and post data without captia logins etc.
http://chatzilla.hacksrus.com/faq/#password
Another strategy might be to embedded messages in digital currency transactions. Pick a cheap coin that's likely to hang around ... DOGE or MOON coin maybe. Build wallet functionality into your app. such that you can post micro transactions back and forth between addresses that your app controls. There would still be a miners fee, but this is only fractions of pennies. Even if they later prohibit adding metadata to transactions, you could make a transaction equivalent to your IP address in MOON, and use vanity addresses in MOON coin for your app. such that when a new node comes online it knows what to search the blockchain for -- 2daMOON%bootStr#pM3. SEND - 104.003021133 MOON IP = 104.3.21.133 not an expensive proposition.
Old question but I've been thinking about this problem myself so will ad my 2-cents. In short, a central server is not required if a node is aware of at least one valid peer. New nodes must be added to the network by any current member (e.g. invited, or node spawns another node, depending on your application).
Assuming that:
agents keep track of peers; the size of this address book and how entries are managed will depend on the nature of the system; e.g. how long peers remain connected, if peers use stable addresses
agents share peer information with other peers
at least some agents remain available for relatively long periods of time relative to frequency node connects to network to update it's address book (or nodes have stable addresses)
in addition to peer addresses, availability information is also tracked (many options here depending on your system. examples include: whether peer has a stable address, when last seen, some availability metric, content/service type information, address valid-until time if known)
new agents are initialized with at least one valid peer (doesn't have to be a central node, can be any valid node)
trust mechanisms shall be required if malicious peers are a possibility
When a peer comes online, it queries the peers in it's peer table to discover which are active and perhaps removes expired dynamic addresses. Nodes exchange peer information and may become linked themselves. This peer discovery/exchange may continue a certain number of hops or via random walk until peer list if of sufficient size and/or quality.
A few more details:
Nodes connect and share peer information with frequency related to how often node addresses change, so address book doesn't become stale and node becomes disconnected because none of it's former peers are available at their last known addresses
Nodes may need to limit the number of peers they accept, to avoid tendency towards centralization around the most stable nodes.
Nodes should be selective about the peers they keep; i.e. ones in which they are more likely to exchange data (e.g. weight based upon history)
Node links may be asymmetric or symmetric depending on the application
Three ways, off the top of my head, though you're always going to need some central server to start the connection unless you went with option 3.
Central server that maintains known list of peers, with keep-alive.
One or more central servers that maintain some common resource peers can use to discover one another, but once connected no longer need the central server as long as the peer remains connected (something like BitTorrent); can chain peered connections as well.
Port/IP scanning (strongly not recommended).
In your example, you'd still have some kind of central server where the peers would be registered; the protocol is the only difference.
To put it simply no, there is no way to do this without a central sever.
If you want to do this you simply need one or more central servers, whether by dynamic dns or not. The clients need a method to discover where they should connect to, and the only truly sensible way to do this is with your own server, in the simplest scenario it only needs to send an IP address in response.
Virtual severs can be had for around $15/month, which IMO is considerably cheaper than trying to use or abuse someone else's bandwidth.
[Edit].
To put it simply, there is another way, as follows.
Upon reflection I think what I'd do is to designate a set of peers as cluster controllers and use a dynamic DNS service to allow other peers to discover the cluster controllers.
Choose a dynamic DNS provider I'll call it myc.ath.cx (I Use http://www.dyndns.com/).
Each peer has to be capable of becoming a cluster controller. A cluster controller will contain a list of all the other peers connected.
When a peer is started it looks up myc.ath.cx and attempts to connect. If connection cannot be made within a period, say 30 seconds, it takes over the registration of the DNS entry.
Any peer wishing to discover other peers can simply query myc.ath.cx and a list will be provided
All peers are responsible for periodically downloading the list of peers, in case they need to cluster controller.
The cluster controller will periodically query the DNS entry - if has changed from it's IP address then it knows that it is no longer the cluster controller - so it will contact the cluster controller that currently has the DNS entry and provide it's list of known hosts.
The cluster controller will periodically contact hosts on the list to ensure that they are still valid.
Your method of sending email does use a dedicated server, though; the peer's email server, to be precise.
Roughly, I don't think it's possible without using some sort of dedicated storage or server (which the email approach does, albeit obliquely) UNLESS you are able to characterize the connectivity to the internet that your peers are using.
Basically, if you have a set of X number of peers, that connect for Y amount of time, and they are then off the grid for Z amount of time... essentially, you can construct a probability equation about how likely it is that the set of peers that you last contacted is still available; where that probability approaches 1 (for a given set of X, Y, and Z above), you can most likely sustain a peer-to-peer network without using storage.
Possibly more in the spirit; instead of having a "dedicated central server", use simple online free service to specify a peer list. Set up a yahoo group, or something like that; clients can automatically look it up and get a peer address from which to query a set of peers; the client can be coded with the authentication to post to the group, and can post periodically its IP address so that others can request the set of known active peers.
If you want to get really tricky, you can start using basically steganographic methods to hide peer location information. I.e. get a google search for "blah"; find the first site listed in the results that has an unprotected (no CAPTCHA) message board; find the third (or whatever) post that starts with "Indubitably" (or whatever), and find the header of the first message there, and there's the IP address of a peer. If that doesn't work, go down the list of search terms to the next one.
But that's sneaky. :-)
Could you re-use an existing dedicated server for the purpose?
I am thinking in particular of registering each of the peers with a Dynamic DNS, but if you were willing to get a bit uglier, sharing access to a known Hotmail account or Google Doc or the like.
You can either use a central directory or some sort of broadcast protocol for service discovery. Assuming that you could get them indexed by Google, you could conceive of a system whereby each peer runs a web site with some unique, rare words contained on a specific page. You could then use Google search results based on these words to identify potential peers. This would essentially be a (noisy and slow) internet broadcast.
If the page structure was a well known pattern or contained identifiable connection information for that peer, it would be easy to distinguish them in the search results. Using such a public directory leaves you open to compromised nodes in the network that is formed, but this is pretty much true of any P2P network absent some security mechanism.
Getting the web sites crawled and highly ranked by Google (or some other search engine) for your particular arcane set of search terms would be the trick. I can think of a couple of ways, but they aren't ones that I would use. For a legitimate service, I'd rather spend the money or find a free web site that could function as a directory.
What about another P2P system built specifically to track online peers of other P2P systems?
Then we reduce the problem of finding peers for any new P2P system to simply finding peers for the 'main' P2P system, which will give you the addresses of online peers for the system you're interested in using...
This is a typical use of a distributed hash table algorithm. I'd suggest looking at something like pastry. It uses a overlay network (Application layer network) on top of other layers.
Each node has a GUID which is used to route requests across the peer network.
If you're loooking for an already established central server then see the metaserver entry on page here:
http://martindevans.appspot.com/
You can register peers on there and then other peers can find them. Obviously this is a central server, but it requires no maintenance on your part.

Resources