Read /proc/<pid>/fd/<fd> without full root access - linux

I have a program (https://github.com/raboof/connbeat) that relies on /proc/[pid]/fd/* to find processes given a (networking) inode.
/proc/[pid]/fd can only be read by root, but I'd like to drop privileges as much as possible for security.
Is there some way I could (efficiently) get to the relationship between processes and inodes without requiring full root rights? Perhaps some syscall that I can selectively give access to using capabilities?

To be able to read fd's of all the processes you need:
CAP_DAC_READ_SEARCH - for access to /proc/[pid]/fd
CAP_SYS_PTRACE - to read symlinks under /proc/[pid]/fd/*
You can restrict your program to just these two capabilities. Then you can access the information in question using ordinary API calls like readdir() or readlink() or whatever else you prefer.
For a broader description of these two capabilities please refer to capabilities(7)

Related

Persistant storage values handling in Linux

I have a QSPI flash on my embedded board.
I have a driver + process "Q" to handle reading and writing into.
I want to store variables like SW revisions, IP, operation time, etc.
I would like to ask for suggestions how to handle the different access rights to write and read values from user space and other processes.
I was thinking to have file for each variable. Than I can assign access rights for those files and process Q can change the value in file if value has been changed. So process Q will only write into and other processes or users can only read.
But I don't know about writing. I was thinking about using message queue or zeroMQ and build the software around it but i am not sure if it is not overkill. But I am not sure how to manage access rights anyway.
What would be the best approach? I would really appreciate if you could propose even totally different approach.
Thanks!
This question will probably be downvoted / flagged due to the "Please suggest an X" nature.
That said, if a file per variable is what you're after, you might want to look at implementing a FUSE file system that wraps your SPI driver/utility "Q" (or build it into "Q" if you get to compile/control source to "Q"). I'm doing this to store settings in an EEPROM on a current work project and its turned out nicely. So I have, for example, a file, that when read, retrieves 6 bytes from EEPROM (or a cached copy) provides a MAC address in std hex/colon-separated notation.
The biggest advantage here, is that it becomes trivial to access all your configuration / settings data from shell scripts (e.g. your init process) or other scripting languages.
Another neat feature of doing it this way is that you can use inotify (which comes "free", no extra code in the fusefs) to create applications that efficiently detect when settings are changed.
A disadvantage of this approach is that it's non-trivial to do atomic transactions on multiple settings and still maintain normal file semantics.

Change or hide process name in htop

It seems that htop shows all running processes to every user, and process names in htop contain all the file names that I include in the command line. Since I usually use very long file names that actually contains a lot of detailed information about my project, I do not want such information to be visible to every one (but I am OK that other users see what software that I am running).
How can I hide the details in the process name?
How can I hide the details in the process name?
Since kernel 3.3, you can mount procfs with the hidepid option set to 1 or 2.
The kernel documentation file proc.txt describe this option:
The following mount options are supported:
hidepid= Set proc access mode.
hidepid=0 means classic mode - everybody may access all /proc directories
(default).
hidepid=1 means users may not access any /proc directories but their own. Sensitive files like cmdline, sched*, status are now protected against other users. This makes it impossible to learn whether any user runs specific program (given the program doesn't reveal itself by its behaviour). As an additional bonus, as /proc//cmdline is unaccessible for other users, poorly written programs passing sensitive information via program arguments are now protected against local eavesdroppers.
hidepid=2 means hidepid=1 plus all /proc will be fully invisible to other users. It doesn't mean that it hides a fact whether a process with a specific pid value exists (it can be learned by other means, e.g. by "kill -0 $PID"), but it hides process' uid and gid, which may be learned by stat()'ing /proc// otherwise. It greatly complicates an intruder's task of gathering information about running processes, whether some daemon runs with elevated privileges, whether other user runs some sensitive program, whether other users run any program at all, etc.

What is the best way to store information within the Linux kernel?

A kernel module I created is constantly generating information that I would like to store within the kernel and be readable from root. I was thinking of storing the information in some sort of log file with specific permissions, but I read that writing to files within the kernel space code is not good.
What is a good way to store information in the kernel that is fast and accessible by root?
~Thanks
If it's constantly generating new information, I would write it out with printk(). This way it will be seen by dmesg as well be written out to /var/log/kern.log.
Although, this is not for sensitive information, since dmesg could be used by any user.
Depending on the type of information, you can also provide it via /proc or /sys files, netlink, relayfs, /dev ioctl.

Kernel security modules: i_security in struct inode

my question is probably again pretty simple, but I did not find anything. I am writing a Linux Security Module. As you might know the struct inode in the kernel contains one field i_security to save security relevant information for the LSM. Now just to make sure: Is it safe to assume that no user (not even root) will be able to read or write this value, i.e. can this value really be accessed only from kernel space?
The reason for my question is, that it is obvious that some inode data can be accessed from userspace (through systemcalls I guess, but still using chmod etc. you are able to change some values in an inode) and now I wonder if that doesn't mean, that all inode data (also the i_security) can be accessed from user space somehow.
Cheers
Yes. You can use grep or ack to scan kernel code for i_security, and you can find it is modified only by files under security/ directory, and cannot be modified by user applications, since they have no direct access to the i_security field.

Why can't files be manipulated by inode?

Why is it that you cannot access a file when you only know its inode, without searching for a file that links to that inode? A hard link to the file contains nothing but a name and a number telling you where to find the inode with all the real information about the file. I was surprised when I was told that there was no usermode way to use the inode number directly to open a file.
This seems like such a harmless and useful capability for the system to provide. Why is it not provided?
Security reasons -- to access a file you need permission on the file AS WELL AS permission to search all the directories from the root needed to get at the file. If you could access a file by inode, you could bypass the checks on the containing directories.
This allows you to create a file that can be accessed by a set of users (or a set of groups) and not anyone else -- create directories that are only accessable by the the users (one dir per user), and then hard-link the file into all of those directories -- the file itself is accessable by anyone, but can only actually be accessed by someone who has search permissions on one of the directories it is linked into.
Some Operating Systems do have that facility. For example, OS X needs it to support the Carbon File Manager, and on Linux you can use debugfs. Of course, you can do it on any UNIX from the command-line via find -inum, but the real reason you can't access files by inode is that it isn't particularly useful. It does kindof circumvent file permissions, because if there's a file you can read in a folder you can't read or execute, then opening the inode lets you discover it.
The reason it isn't very useful is that you need to find an inode number via a *stat() call, at which point you already have the filename (or an open fd)...or you need to guess the inum.
In response to your comment: To "pass a file", you can use fd passing over AF_LOCAL sockets by means of SCM_RIGHTS (see man 7 unix).
Btrfs does have an ioctl for that (BTRFS_IOC_INO_PATHS added in this patch), however it does no attempt to check permissions along the path, and is simply reserved to root.
Surely if you've already looked up a file via a path, you shouldn't have to do it again and again?
stat(f,&s); i=open(f,O_MODE);
involves two trawls through a directory structure. This wastes CPU cycles with unnecessary string operations. Yes, the well-designed file system cache will hide most of this inefficiency from a casual end-user, but repeating work for no reason is ugly if not plain silly.

Resources