What's going on in this pattern match? - haskell

in Data.List, I saw this unfamiliar pattern match:
{-# NOINLINE [1] unsafeTake #-}
unsafeTake :: Int -> [a] -> [a]
unsafeTake !_ [] = []
unsafeTake 1 (x: _) = [x]
unsafeTake m (x:xs) = x : unsafeTake (m - 1) xs
My understanding is that ! removes thunks. Okay, but _ is ignored. There's something I'm not understanding. Clarification is appreciated.

That is a BangPattern. It is a annotation to tell the compiler, that this function should behave strict in its first argument. It is equivalent to the following code:
unsafeTake :: Int -> [a] -> [a]
unsafeTake x [] = x `seq` []
unsafeTake 1 (x: _) = [x]
unsafeTake m (x:xs) = m `seq` (x : unsafeTake (m - 1) xs)
And that the field is strict, means that if the first argument happens to be bottom, then the program halts:
unsafeTake (error "kaboom") []
This will throw kaboom with the strictness annotation, but it won't happen if it doesn't have it.
You can also place Bang Patterns into data type definitions:
data Tree a = Branch (Tree a) !a (Tree a)
| Empty
Then it will always evaluate the field containing a to its weak head normal form. This means that it won't evaluate the whole structure. From the haskell wiki
a constructor (eventually applied to arguments) like True, Just (square 42) or (:) 1
a built-in function applied to too few arguments (perhaps none) like (+) 2 or sqrt.
or a lambda abstraction \x -> expression.

It tells the compiler that even if the second argument is [], while it then knows it can apply the first alternative, it should still evaluate the first argument to head normal form. This means that unsafeTake is 'strict' in its first argument.
You can see the result if you try to evaluate unsafeTake (last (repeat 0)) [] compared to the same with take.

Related

Remove first element that fulfills predicate (Haskell)

I want to make a function that removes the first element that fulfills the predicate given in the second argument. Something like this:
removeFirst "abab" (< 'b') = "bab"
removeFirst "abab" (== 'b') = "aab"
removeFirst "abab" (> 'b') = "abab"
removeFirst [1,2,3,4] even = [1,3,4]
I wanted to do it by recursively, and came up with this:
removeFirst :: [a] -> (a -> Bool) -> [a]
removeFirst [] _ = []
rremoveFirst (x:xs) p = if p x then x : removeFirst xs p else removeFirst xs p
(Inspired by this question)
But I get a type-error, like this:
Couldn't match type ‘a’ with ‘Bool’
Expected: [Bool]
Actual: [a]
‘a’ is a rigid type variable bound by
the type signature for:
removeFirst :: forall a. [a] -> (a -> Bool) -> [a]
or this:
ghci> removeFirst [1,2,3,4] even
<interactive>:25:1: error:
* Variable not in scope: removeFirst :: [a0] -> (a1 -> Bool) -> t
* Perhaps you meant `rem' (imported from Prelude)
I know this is a relatively simple thing to program, I am just not familiar enough with Haskell yet. How can I do this "Haskell-style" (in one line)?
Before doing it "in style", why not first simply do it, so it works. This is how we learn.
"Variable not in scope: removeFirst ..." simply means you haven't defined the function named removeFirst.
So it seems you first tried to define it (and the error you show does not go with the code you show), then you got errors so it didn't get defined, and then you tried calling it and got the error saying it's not defined yet, naturally.
So, save your program in a source file, then load that file in GHCi. Then if you get any errors please copy-paste the full code from your file into your question (do not re-type it by hand). Also please specify what is it you do when you get the error messages, precisely. And be sure to include the error messages in full by copy-pasting them as well.
Then the logic of your code can be addressed.
Since others have posted working code, here's how I'd code this as a one-liner of sorts:
remFirst :: [a] -> (a -> Bool) -> [a]
remFirst xs p = foldr g z xs xs
where
g x r ~(_:tl) -- "r" for recursive result
| p x -- we've found it, then
= tl -- just return the tail
| otherwise
= x : r tl -- keep x and continue
z _ = [] -- none were found
Shortened, it becomes
remFirst xs p =
foldr (\x r ~(_:tl) -> if p x then tl else x : r tl)
(const []) xs xs
Not one line, but it works.
removeFirst :: [a] -> (a -> Bool) -> [a]
removeFirst (x:xs) pred
| pred x = xs
| otherwise = x : removeFirst xs pred
For a one-liner, I imagine you'd want to use foldl to walk across the list from the left.
EDIT
This solution uses guards, it first checks to see if the first element of the list passed in satisfies the predicate, and if not, it prepends it to the list and recursively checks the tail of the passed in list.
Using manual recursion does not lead to a one-liner solution, so let's try using some pre-built recursion scheme from the library.
Function scanl :: (b -> a -> b) -> b -> [a] -> [b] looks handy. It produces a succession of states, one state per input item.
Testing under the ghci interpreter:
$ ghci
λ>
λ> p = (=='b')
λ>
λ> xs = "ababcdab"
λ> ss = tail $ scanl (\(s,n) x -> if (p x) then (x,n+1) else (x,n)) (undefined,0) xs
λ>
λ> ss
[('a',0),('b',1),('a',1),('b',2),('c',2),('d',2),('a',2),('b',3)]
λ>
At that point, it is easy to spot and get rid of the one unwanted element, thru some simple data massaging:
λ>
λ> filter (\(x,n) -> (n /= 1) || (not $ p x)) ss
[('a',0),('a',1),('b',2),('c',2),('d',2),('a',2),('b',3)]
λ>
λ> map fst $ filter (\(x,n) -> (n /= 1) || (not $ p x)) ss
"aabcdab"
λ>
Let's now write our removeFirst function. I take the liberty to have the predicate as leftmost argument; this is what all library functions do.
removeFirst :: (a -> Bool) -> [a] -> [a]
removeFirst p =
let
stepFn = \(s,n) x -> if (p x) then (x,n+1) else (x,n)
p2 = \(x,n) -> (n /= 1) || (not $ p x)
in
map fst . filter p2 . tail . scanl stepFn (undefined,0)
If required, this version can be changed into a one-liner solution, just by expanding the values of stepFn and p2 into the last line. Left as an exercise for the reader. It makes for a long line, so it is debatable whether that improves readability.
Addendum:
Another approach consists in trying to find a library function, similar to splitAt :: Int -> [a] -> ([a], [a]) but taking a predicate instead of the list position.
So we submit the (a -> Bool) -> [a] -> ([a],[a]) type signature into the Hoogle specialized search engine.
This readily finds the break library function. It is exactly what we require.
λ>
λ> break (=='b') "zqababcdefab"
("zqa","babcdefab")
λ>
So we can write our removeFirst function like this:
removeFirst :: (a -> Bool) -> [a] -> [a]
removeFirst p xs = let (ys,zs) = break p xs in ys ++ (tail zs)
The source code for break simply uses manual recursion.

Changing recursive guards into higher order functions

I'm trying to convert basic functions into higher order functions (specifically map, filter, or foldr). I was wondering if there are any simple concepts to apply where I could see old functions I've written using guards and turn them into higher order.
I'm working on changing a function called filterFirst that removes the first element from the list (second argument) that does not satisfy a given predicate function (first argument).
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst _ [] = []
filterFirst x (y:ys)
| x y = y : filterFirst x ys
| otherwise = ys
For an example:
greaterOne :: Num a=>Ord a=>a->Bool
greaterOne x = x > 1
filterFirst greaterOne [5,-6,-7,9,10]
[5,-7,9,10]
Based on the basic recursion, I was wondering if there might be a way to translate this (and similar functions) to higher order map, filter, or foldr. I'm not very advanced and these functions are new to me.
There is a higher-order function that's appropriate here, but it's not in the base library. What's the trouble with foldr? If you just fold over the list, you'll end up rebuilding the whole thing, including the part after the deletion.
A more appropriate function for the job is para from the recursion-schemes package (I've renamed one of the type variables):
para :: Recursive t => (Base t (t, r) -> r) -> t -> r
In the case of lists, this specializes to
para :: (ListF a ([a], r) -> r) -> [a] -> r
where
data ListF a b = Nil | Cons a b
deriving (Functor, ....)
This is pretty similar to foldr. The recursion-schemes equivalent of foldr is
cata :: Recursive t => (Base t r -> r) -> t -> r
Which specializes to
cata :: (ListF a r -> r) -> [a] -> r
Take a break here and figure out why the type of cata is basically equivalent to that of foldr.
The difference between cata and para is that para passes the folding function not only the result of folding over the tail of the list, but also the tail of the list itself. That gives us an easy and efficient way to produce the rest of the list after we've found the first non-matching element:
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst f = para go
where
--go :: ListF a ([a], [a]) -> [a]
go (Cons a (tl, r))
| f a = a : r
| otherwise = tl
go Nil = []
para is a bit awkward for lists, since it's designed to fit into a more general context. But just as cata and foldr are basically equivalent, we could write a slightly less awkward function specifically for lists.
foldrWithTails
:: (a -> [a] -> b -> b)
-> b -> [a] -> b
foldrWithTails f n = go
where
go (a : as) = f a as (go as)
go [] = n
Then
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst f = foldrWithTails go []
where
go a tl r
| f a = a : r
| otherwise = tl
First, let's flip the argument order of your function. This will make a few steps easier, and we can flip it back when we're done. (I'll call the flipped version filterFirst'.)
filterFirst' :: [a] -> (a -> Bool) -> [a]
filterFirst' [] _ = []
filterFirst' (y:ys) x
| x y = y : filterFirst' ys x
| otherwise = ys
Note that filterFirst' ys (const True) = ys for all ys. Let's substitute that in place:
filterFirst' :: [a] -> (a -> Bool) -> [a]
filterFirst' [] _ = []
filterFirst' (y:ys) x
| x y = y : filterFirst' ys x
| otherwise = filterFirst' ys (const True)
Use if-else instead of a guard:
filterFirst' :: [a] -> (a -> Bool) -> [a]
filterFirst' [] _ = []
filterFirst' (y:ys) x = if x y then y : filterFirst' ys x else filterFirst' ys (const True)
Move the second argument to a lambda:
filterFirst' :: [a] -> (a -> Bool) -> [a]
filterFirst' [] = \_ -> []
filterFirst' (y:ys) = \x -> if x y then y : filterFirst' ys x else filterFirst' ys (const True)
And now this is something we can turn into a foldr. The pattern we were going for is that filterFirst' (y:ys) can be expressed in terms of filterFirst' ys, without using ys otherwise, and we're now there.
filterFirst' :: Foldable t => t a -> (a -> Bool) -> [a]
filterFirst' = foldr (\y f -> \x -> if x y then y : f x else f (const True)) (\_ -> [])
Now we just need to neaten it up a bit:
filterFirst' :: Foldable t => t a -> (a -> Bool) -> [a]
filterFirst' = foldr go (const [])
where go y f x
| x y = y : f x
| otherwise = f (const True)
And flip the arguments back:
filterFirst :: Foldable t => (a -> Bool) -> t a -> [a]
filterFirst = flip $ foldr go (const [])
where go y f x
| x y = y : f x
| otherwise = f (const True)
And we're done. filterFirst implemented in terms of foldr.
Addendum: Although filter isn't strong enough to build this, filterM is when used with the State monad:
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.State
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst x ys = evalState (filterM go ys) False
where go y = do
alreadyDropped <- get
if alreadyDropped || x y then
return True
else do
put True
return False
If we really want, we can write filterFirst using foldr, since foldr is kind of "universal" -- it allows any list transformation we can perform using recursion. The main downside is that the resulting code is rather counter-intuitive. In my opinion, explicit recursion is far better in this case.
Anyway here's how it is done. This relies on what I consider to be an antipattern, namely "passing four arguments to foldr". I call this an antipattern since foldr is usually called with three arguments only, and the result is not a function taking a fourth argument.
filterFirst :: (a->Bool)->[a]->[a]
filterFirst p xs = foldr go (\_ -> []) xs True
where
go y ys True
| p y = y : ys True
| otherwise = ys False
go y ys False = y : ys False
Clear? Not very much. The trick here is to exploit foldr to build a function Bool -> [a] which returns the original list if called with False, and the filtered-first list if called with True. If we craft that function using
foldr go baseCase xs
the result is then obviously
foldr go baseCase xs True
Now, the base case must handle the empty list, and in such case we must return a function returning the empty list, whatever the boolean argument is. Hence, we arrive at
foldr go (\_ -> []) xs True
Now, we need to define go. This takes as arguments:
a list element y
the result of the "recursion" ys (a function Bool->[a] for the rest of the list)
and must return a function Bool->[a] for the larger list. So let's also consider
a boolean argument
and finally make go return a list. Well, if the boolean is False we must return the list unchanged, so
go y ys False = y : ys False
Note that ys False means "the tail unchanged", so we are really rebuilding the whole list unchanged.
If instead the boolean is true, we query the predicate as in p y. If that is false, we discard y, and return the list tail unchanged
go y ys True
| p y = -- TODO
| otherwise = ys False
If p y is true, we keep y and we return the list tail filtered.
go y ys True
| p y = y : ys True
| otherwise = ys False
As a final note, we cold have used a pair ([a], [a]) instead of a function Bool -> [a], but that approach does not generalize as well to more complex cases.
So, that's all. This technique is something nice to know, but I do not recommend it in real code which is meant to be understood by others.
Joseph and chi's answers already show how to derive a foldr implementation, so I'll try to aid intuition.
map is length-preserving, filterFirst is not, so trivially map must be unsuited for implementing filterFirst.
filter (and indeed map) are memoryless - the same predicate/function is applied to each element of the list, regardless of the result on other elements. In filterFirst, behaviour changes once we see the first non-satisfactory element and remove it, so filter (and map) are unsuited.
foldr is used to reduce a structure to a summary value. It's very general, and it might not be immediately obvious without experience what sorts of things this may cover. filterFirst is in fact such an operation, though. The intuition is something like, "can we build it in a single pass through the structure, building it up as we go(, with additional state stored as required)?". I fear Joseph's answer obfuscates a little, as foldr with 4 parameters, it may not be immediately obvious what's going on, so let's try it a little differently.
filterFirst p xs = snd $ foldr (\a (deleted,acc) -> if not deleted && not (p a) then (True,acc) else (deleted,a:acc) ) (False,[]) xs
Here's a first attempt. The "extra state" here is obviously the bool indicating whether or not we've deleted an element yet, and the list accumulates in the second element of the tuple. At the end we call snd to obtain just the list. This implementation has the problem, however, that we delete the rightmost element not satisfying the predicate, because foldr first combines the rightmost element with the neutral element, then the second-rightmost, and so on.
filterFirst p xs = snd $ foldl (\(deleted,acc) a -> if not deleted && not (p a) then (True,acc) else (deleted,a:acc) ) (False,[]) xs
Here, we try using foldl. This does delete the leftmost non-satisfactory element, but has the side-effect of reversing the list. We can stick a reverse at the front, and this would solve the problem, but is somewhat unsatisfactory due to the double-traversal.
Then, if you go back to foldr, having realized that (basically) if you want transform a list whilst preserving order that foldr is the correct variant, you play with it for a while and end up writing what Joseph suggested. I do however agree with chi that straightforward recursion is the best solution here.
Your function can also be expressed as an unfold, or, more specifically, as an apomorphism. Allow me to begin with a brief explanatory note, before the solution itself.
The apomorphism is the recursion scheme dual to the paramorphism (see dfeuer's answer for more about the latter). Apomorphisms are examples of unfolds, which generate a structure from a seed. For instance, Data.List offers unfoldr, a list unfold.
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
The function given to unfoldr takes a seed and either produces a list element and a new seed (if the maybe-value is a Just) or terminates the list generation (if it is Nothing). Unfolds are more generally expressed by the ana function from recursion-schemes ("ana" is short for "anamorphism").
ana :: Corecursive t => (a -> Base t a) -> a -> t
Specialised to lists, this becomes...
ana #[_] :: (b -> ListF a b) -> b -> [a]
... which is unfoldr in different clothing.
An apomorphism is an unfold in which the generation of the structure can be short-circuited at any point of the process, by producing, instead of a new seed, the rest of the structure in a fell swoop. In the case of lists, we have:
apo #[_] :: (b -> ListF a (Either [a] b)) -> b -> [a]
Either is used to trigger the short-circuit: with a Left result, the unfold short-circuits, while with a Right it proceeds normally.
The solution in terms of apo is fairly direct:
{-# LANGUAGE LambdaCase #-}
import Data.Functor.Foldable
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst p = apo go
where
go = \case
[] -> Nil
a : as
| p a -> Cons a (Right as)
| otherwise -> case as of
[] -> Nil
b : bs -> Cons b (Left bs)
It is somewhat more awkward than dfeuer's para-based solution, because if we want to short-circuit without an empty list for a tail we are compelled to emit one extra element (the b in the short-circuiting case), and so we have to look one position ahead. This awkwardness would grow by orders of magnitude if, rather than filterFirst, we were to impĺement plain old filter with an unfold, as beautifully explained in List filter using an anamorphism.
This answer is inspired by a comment from luqui on a now-deleted question.
filterFirst can be implemented in a fairly direct way in terms of span:
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst p = (\(yeas, rest) -> yeas ++ drop 1 rest) . span p
span :: (a -> Bool) -> [a] -> ([a], [a]) splits the list in two at the first element for which the condition doesn't hold. After span, we drop the first element of the second part of the list (with drop 1 rather than tail so that we don't have to add a special case for []), and reassemble the list with (++).
As an aside, there is a near-pointfree spelling of this implementation which I find too pretty not to mention:
filterFirst :: (a -> Bool) -> [a] -> [a]
filterFirst p = uncurry (++) . second (drop 1) . span p
While span is a higher order function, it would be perfectly understandable if you found this implementation disappointing in the context of your question. After all, span is not much more fundamental than filterFirst itself. Shouldn't we try going a little deeper, to see if we can capture the spirit of this solution while expressing it as a fold, or as some other recursion scheme?
I believe functions like filterFirst can be fine demonstrations of hylomorphisms. A hylomorphism is an unfold (see my other answer for more on that) that generates an intermediate data structure followed by a fold which turns this data structure into something else. Though it might look like that would require two passes to get a result (one through the input structure, and another through the intermediate one), if the hylomorphism implemented properly (as done in the hylo function of recursion-schemes) it can be done in a single pass, with the fold consuming pieces of the intermediate structure as they are generated by the unfold (so that we don't have to actually build it all only to tear it down).
Before we start, here is the boilerplate needed to run what follows:
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
import Data.Functor.Foldable
import Data.Functor.Foldable.TH
The strategy here is picking an intermediate data structure for the hylomorphism that expresses the essence of what we want to achieve. In this case, we will use this cute thing:
data BrokenList a = Broken [a] | Unbroken a (BrokenList a)
-- I won't actually use those instances here,
-- but they are nice to have if you want to play with the type.
deriving (Eq, Show, Functor, Foldable, Traversable)
makeBaseFunctor ''BrokenList
BrokenList is very much like a list (Broken and Unbroken mirror [] and (:), while the makeBaseFunctor incantation generates a BrokenListF base functor analogous to ListF, with BrokenF and UnbrokenF constructors), except that it has another list attached at its end (the Broken constructor). It expresses, in a quite literal way, the idea of a list being divided in two parts.
With BrokenList at hand, we can write the hylomorphism. coalgSpan is the operation used for the unfold, and algWeld, the one used for the fold.
filterFirst p = hylo algWeld coalgSpan
where
coalgSpan = \case
[] -> BrokenF []
x : xs
| p x -> UnbrokenF x xs
| otherwise -> BrokenF xs
algWeld = \case
UnbrokenF x yeas -> x : yeas
BrokenF rest -> rest
coalgSpan breaks the list upon hitting a x element such that p x doesn't hold. Not adding that element to the second part of the list (BrokenF xs rather than BrokenF (x : xs)) takes care of the filtering. As for algWeld, it is used to concatenate the two parts (it is very much like what we would use to implement (++) using cata).
(For a similar example of BrokenList in action, see the breakOn implementation in Note 5 of this older answer of mine. It suggests what it would take to implement span using this strategy.)
There are at least two good things about this hylo-based implementation. Firstly, it has good performance (casual testing suggests that, if compiled with optimisations, it is at least as good as, and possibly slightly faster than, the most efficient implementations in other answers here). Secondly, it reflects very closely your original, explicitly recursive implementation of filterFirst (or, at any rate, more closely than the fold-only and unfold-only implementations).

How can I use generic type annotations to describe a recursive data type?

Here's the function:
comboGraph :: [a] -> Int -> [b]
comboGraph _ 0 = []
comboGraph [] _ = []
comboGraph (x:xs) n =
(buildEdges x xs) : comboGraph xs n
where buildEdges h t = (h, comboGraph t (n-1))
Ths function takes in a list of type a, a number, and returns a list of type b. As you can see, though, type b is actually a recursive type -- it will be something along the lines of [(a, [(a, b1)])]. When I try to compile, I get this error:
• Couldn't match type ‘b’ with ‘(a, [b0])’
‘b’ is a rigid type variable bound by
the type signature for:
comboGraph :: forall a b. [a] -> Int -> [(a, [b])]
at xxx.hs:15:15
Expected type: [(a, [b])]
Actual type: [(a, [(a, [b0])])]
• In the expression: (buildEdges x xs) : comboGraph xs n
In an equation for ‘comboGraph’:
comboGraph (x : xs) n
= (buildEdges x xs) : comboGraph xs n
where
buildEdges h t = (h, comboGraph t (n - 1))
How do I properly annotate this function?
To make the issue a bit more evident, let's substitute the definition of buildEdges in the final case of your definition:
comboGraph (x:xs) n =
(x, comboGraph xs (n-1)) : comboGraph xs n
The result of comboGraph is supposed to be a list, but one whose elements are pairs that also have a comboGraph result (i.e. a list of the same type) within. As the type error you got says, that doesn't work -- it's as if you wanted a list with two tails. The fix is switching to a different data structure that reflects what you are trying to do:
-- Feel free to substitute better names.
data Combo a = Empty | Node a (Combo a) (Combo a)
deriving (Eq, Ord, Show)
Empty covers the base cases which used to result in an empty list, while Node has one appropriately-typed field for each of the things you want to combine in the recursive case. comboGraph then becomes:
comboGraph :: [a] -> Int -> Combo a
comboGraph _ 0 = Empty
comboGraph [] _ = Empty
comboGraph (x:xs) n = Node x (comboGraph xs (n-1)) (comboGraph xs n)
(Note that Combo is actually a binary tree with values on the nodes.)
I like the other answer, and I think you should use it. But it makes some reasoning leaps that require some intuition, and it can be hard to get this intuition without doing things the mechanical way a few times. So in this answer, I will show how to start with a failing definition like the one you have, "turn a crank", and mechanically get a solution that does work. The technique below can be applied to any infinite type error.
You have the following clause (paraphrased slightly):
comboGraph (x:xs) n =
(x, comboGraph xs (n-1)) : {- ... -}
Just doing some straightforward type inference reasoning, we can see that comboGraph takes a list of some type (from the fact that it pattern matches on x:xs) and a number (from the fact that it subtracts one). Let's pick a concrete (monomorphic! but not yet known) type a for the list elements and see what we can infer about what it returns.
Well, it clearly returns a list with tuples inside. And the first part of the tuple is just an a. What about the second part? The second part of the tuple is... whatever type comboGraph returns. So comboGraph returns a type t satisfying the equation:
t = [(a, t)]
The only solution to this equation is [(a, [(a, [(a, [(a, ...)])])])]. Such infinite types don't exist raw in Haskell. But there is a standard trick to get quite close: use (type-level) recursion by introducing a newtype. We're solving for t, but Haskell types have to start with an upper-case letter, so we'll name our solution to this equation T.
newtype T a = T [(a, T a)] deriving Show
Now we don't quite have T a ~ [(a, T a)], but we do have an isomorphism: namely, \(T xs) -> xs :: T a -> [(a, T a)] and T :: [(a, T a)] -> T a are inverses. So now we can write your comboGraph definition by exploiting this isomorphism. Let's name the other half of the isomorphism:
unT :: T a -> [(a, T a)]
unT (T xs) = xs
So:
comboGraph (x:xs) n =
T ((x, comboGraph xs (n-1)) : unT (comboGraph xs n))
The base cases have to get wrapped in T, as well, of course:
comboGraph _ 0 = T []
comboGraph [] _ = T []
Try it in ghci:
> comboGraph "abc" 3
T [('a',T [('b',T [('c',T [])]),('c',T [])]),('b',T [('c',T [])]),('c',T [])]

How I can set the signature of a function right?

I'm practicing some Haskell to understand the \, case.. of and Maybe better.
I've got this little function here which should return Nothing if the array is empty, Just y if y is equal to the head of the array xs and Just (tail xs) if y is not equal to the head of the array xs.
I set the return type of the function to Maybe a because in one case it should return an Int and in the other an [Int].
funct :: Int -> [Int] -> Maybe a
funct = \y xs -> case xs of
[] -> Nothing
xs -> if ((head xs) == y)
then Just y
else Just (tail xs)
What am I missing? I am getting the error that it couldn't match type a with [Int]. Isn't the a in Maybe a generic or is it influenced by the fact that I "used" the a as an Int in the Just y part?
EDIT: Ok my suggestion was bs, I tested it with Just (tail xs) in the then and else part and I'm still getting the same error.
set the return type of the function to Maybe a because in one case it should return an Int and in the other an [Int].
Haskell is statically typed. Meaning it can not - at runtime - have a different return type. It can only have one return type. a is not an ad hoc type (in the sense that it can be any type at runtime). It means that a will be determined - at compile time - based on the types of other parameters.
For instance you can write: foo :: a -> a -> a to specify that if foo takes two Ints (again known at compile time), the result will be an Int.
You can however use Either a b to say that you will either return a Left a, or a Right b. So you can rewrite it to:
funct :: Int -> [Int] -> Maybe (Either Int [Int])
funct = \y xs -> case xs of
[] -> Nothing
xs -> if ((head xs) == y)
then Just (Left y)
else Just (Right (tail xs))
Your function however is quite verbose, you can make it more clear and compact as follows:
funct :: Int -> [Int] -> Maybe (Either Int [Int])
funct _ [] = Nothing
funct y (h:t) | h == y = Just (Left y)
| otherwise = Just (Right t)
Furthermore we can generalize it to:
funct :: Eq a => a -> [a] -> Maybe (Either a [a])
funct _ [] = Nothing
funct y (h:t) | h == y = Just (Left y)
| otherwise = Just (Right t)
Here Eq is a typeclass that specifies that there exists a function (==) :: a -> a -> Bool that we can use. Otherwise using == in the body of the function would not be possible.
Furthermore we use patterns in the head of every clause. [] is a pattern that describes the empty list. (h:t) on the other hand is a pattern describing a list containing at least one element: the head h, followed by a (possibly empty tail t).

Converting a foldl into fold1

I am using the following fold to get the final monotonically decreasing sequence of a list.
foldl (\acc x -> if x<=(last acc) then acc ++ [x] else [x]) [(-1)] a
So [9,5,3,6,2,1] would return [6,2,1]
However, with foldl I needed to supply a start for the fold namely [(-1)]. I was trying to turn into to a foldl1 to be able to handle any range of integers as well as any Ord a like so:
foldl1 (\acc x -> if x<=(last acc) then acc ++ [x] else [x]) a
But I get there error:
cannot construct infinite type: a ~ [a]
in the second argument of (<=) namely last acc
I was under the impression that foldl1 was basically :
foldl (function) [head a] a
But I guess this isn't so? How would you go about making this fold generic for any Ord type?
I was under the impression that foldl1 was basically :
foldl (function) [head a] a
No, foldl1 is basically:
foldl function (head a) (tail a)
So the initial element is not a list of head a, but head a.
How would you go about making this fold generic for any Ord type?
Well a quick fix is:
foldl (\acc x -> if x<=(last acc) then acc ++ [x] else [x]) [head a] (tail a)
But there are still two problems:
in case a is an empty list, this function will error (while you probably want to return the empty list); and
the code is not terribly efficient since both last and (++) run in O(n).
The first problem can easily be addressed by using pattern matching to prevent that scenario. But for the latter you better would for instance use a reverse approach. Like for instance:
f :: Ord t => [t] -> [t]
f [] = [] -- case when the empty list is given
f a = reverse $ foldl (\acc#(ac:_) x -> if x <= ac then (x:acc) else [x]) [head a] (tail a)
Furthermore personally I am not a huge fan of if-then-else in functional programming, you can for instance define a helper function like:
f :: Ord t => [t] -> [t]
f [] = [] -- case when the empty list is given
f a = reverse $ foldl g [head a] (tail a)
where g acc#(ac:_) x | x <= ac = (x:acc)
| otherwise = [x]
Now reverse runs in O(n) but this is done only once. Furthermore the (:) construction runs in O(1) so all the actions in g run in O(1) (well given the comparison of course works efficient, etc.) making the algorithm itself O(n).
For your sample input it gives:
*Main> f [9,5,3,6,2,1]
[6,2,1]
The type of foldl1 is:
Foldable t => (a -> a -> a) -> t a -> a
Your function argument,
\acc x -> if x<=(last acc) then acc ++ [x] else [x]
has type:
(Ord a) => [a] -> a -> [a]
When Haskell's typechecker tries typechecking your function, it'll try unifying the type a -> a -> a (the type of the first argument of foldl1) with the type [a] -> a -> [a] (the type of your function).
To unify these types would require unifying a with [a], which would lead to the infinite type a ~ [a] ~ [[a]] ~ [[[a]]]... and so on.
The reason this works while using foldl is that the type of foldl is:
Foldable t => (b -> a -> b) -> b -> t a -> b
So [a] gets unified with b and a gets unified with the other a, leading to no problem at all.
foldl1 is limited in that it can only take functions which deal with only one type, or, in other terms, the accumulator needs to be the same type as the input list (for instance, when folding a list of Ints, foldl1 can only return an Int, while foldl can use arbitrary accumulators. So you can't do this using foldl1).
With regards to making this generic for all Ord values, one possible solution is to make a new typeclass for values which state their own "least-bound" value, which would then be used by your function. You can't make this function as it is generic on all Ord values because not all Ord values have sequence least bounds you can use.
class LowerBounded a where
lowerBound :: a
instance LowerBounded Int where
lowerBound = -1
finalDecreasingSequence :: (Ord a, LowerBounded a) => [a] -> [a]
finalDecreasingSequence = foldl buildSequence lowerBound
where buildSequence acc x
| x <= (last acc) = acc ++ [x]
| otherwise = [x]
You might also want to read a bit about how Haskell does its type inference, as it helps a lot in figuring out errors like the one you got.

Resources