Unable to Create RDD[Triple] using
sparkSession.rdf(Lang.NTRIPLES)(path)
Used to working without issue with Java 11, and Spark 2.4.x
Not working ,throwing error when using Java 8 and Spark 3.0
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 28499
at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.accept(BytecodeReadingParanamer.java:532)
at com.thoughtworks.paranamer.BytecodeReadingParanamer$ClassReader.access$200(BytecodeReadingParanamer.java:315)
at com.thoughtworks.paranamer.BytecodeReadingParanamer.lookupParameterNames(BytecodeReadingParanamer.java:102)
at com.thoughtworks.paranamer.CachingParanamer.lookupParameterNames(CachingParanamer.java:76)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.getCtorParams(BeanIntrospector.scala:45)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1(BeanIntrospector.scala:59)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$1$adapted(BeanIntrospector.scala:59)
at scala.collection.TraversableLike.$anonfun$flatMap$1(TraversableLike.scala:292)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.flatMap(TraversableLike.scala:292)
at scala.collection.TraversableLike.flatMap$(TraversableLike.scala:289)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:108)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.findConstructorParam$1(BeanIntrospector.scala:59)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$19(BeanIntrospector.scala:181)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:285)
at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36)
at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:198)
at scala.collection.TraversableLike.map(TraversableLike.scala:285)
at scala.collection.TraversableLike.map$(TraversableLike.scala:278)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:198)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14(BeanIntrospector.scala:175)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.$anonfun$apply$14$adapted(BeanIntrospector.scala:174)
at scala.collection.immutable.List.flatMap(List.scala:366)
at com.fasterxml.jackson.module.scala.introspect.BeanIntrospector$.apply(BeanIntrospector.scala:174)
at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$._descriptorFor(ScalaAnnotationIntrospectorModule.scala:21)
at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.fieldName(ScalaAnnotationIntrospectorModule.scala:29)
at com.fasterxml.jackson.module.scala.introspect.ScalaAnnotationIntrospector$.findImplicitPropertyName(ScalaAnnotationIntrospectorModule.scala:77)
at com.fasterxml.jackson.databind.introspect.AnnotationIntrospectorPair.findImplicitPropertyName(AnnotationIntrospectorPair.java:490)
at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector._addFields(POJOPropertiesCollector.java:380)
at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.collectAll(POJOPropertiesCollector.java:308)
at com.fasterxml.jackson.databind.introspect.POJOPropertiesCollector.getJsonValueAccessor(POJOPropertiesCollector.java:196)
at com.fasterxml.jackson.databind.introspect.BasicBeanDescription.findJsonValueAccessor(BasicBeanDescription.java:252)
at com.fasterxml.jackson.databind.ser.BasicSerializerFactory.findSerializerByAnnotations(BasicSerializerFactory.java:346)
at com.fasterxml.jackson.databind.ser.BeanSerializerFactory._createSerializer2(BeanSerializerFactory.java:216)
at com.fasterxml.jackson.databind.ser.BeanSerializerFactory.createSerializer(BeanSerializerFactory.java:165)
at com.fasterxml.jackson.databind.SerializerProvider._createUntypedSerializer(SerializerProvider.java:1388)
at com.fasterxml.jackson.databind.SerializerProvider._createAndCacheUntypedSerializer(SerializerProvider.java:1336)
at com.fasterxml.jackson.databind.SerializerProvider.findValueSerializer(SerializerProvider.java:510)
at com.fasterxml.jackson.databind.SerializerProvider.findTypedValueSerializer(SerializerProvider.java:713)
at com.fasterxml.jackson.databind.ser.DefaultSerializerProvider.serializeValue(DefaultSerializerProvider.java:308)
at com.fasterxml.jackson.databind.ObjectMapper._configAndWriteValue(ObjectMapper.java:4094)
at com.fasterxml.jackson.databind.ObjectMapper.writeValueAsString(ObjectMapper.java:3404)
at org.apache.spark.rdd.RDDOperationScope.toJson(RDDOperationScope.scala:52)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:145)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.SparkContext.withScope(SparkContext.scala:751)
at org.apache.spark.SparkContext.makeRDD(SparkContext.scala:855)
at com.xx.yy.catalog._CatalogDataBuilder.fromTriples(CatalogDataBuilder.scala:433)
***
***
at com.xx.yy.example.TestExample.main(TestExample.scala)
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 28499
I also had a java.lang.ArrayIndexOutOfBoundsException: 28499, very similar, after migrating to Spark 3.0.1 from 2.4.3, when performing a count, countApprox or rdd operation on Spark datasets.
For me, this solution worked:
https://programmersought.com/article/35311239379/
Basically I added this dependency:
<dependency>
<groupId>com.thoughtworks.paranamer</groupId>
<artifactId>paranamer</artifactId>
<version>2.8</version>
</dependency>
Can someone help me understand the cause behind this error:
ERROR Query alert [id = d19f51b1-8131-40dd-ab62, runId = 276833a0-235f-4d2e-bd61] terminated with error
java.util.NoSuchElementException: None.get
at scala.None$.get(Option.scala:347)
at scala.None$.get(Option.scala:345)
at org.apache.spark.sql.execution.datasources.BasicWriteJobStatsTracker$.metrics(BasicWriteStatsTracker.scala:180)
at org.apache.spark.sql.execution.streaming.FileStreamSink.basicWriteJobStatsTracker(FileStreamSink.scala:103)
at org.apache.spark.sql.execution.streaming.FileStreamSink.addBatch(FileStreamSink.scala:140)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5$$anonfun$apply$17.apply(MicroBatchExecution.scala:568)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:111)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:240)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:97)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:170)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5.apply(MicroBatchExecution.scala:566)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:251)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:61)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:565)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:207)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:175)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:175)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:251)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:61)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:175)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:169)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:296)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:208)
The cluster configs are:
Databricks runtime 5.5 LTS
Scala 2.11
Spark 2.4.3
Driver: 64GB mem, 16 cores, 3DBU
workers: 64GB mem, 16 cores, 3DBU (2-4 workers, auto scalable)
there are 3 streaming queries running in parallel as defined in fairscheduler.xml
Spark configs are:
spark.sql.autoBroadcastJoinThreshold=-1
spark.sql.broadcastTimeout=1200
spark.executor.instances=4
spark.executor.cores=16
spark.executor.memory=29g
spark.sql.shuffle.partitions=32
spark.default.parallelism=32
spark.driver.maxResultSize=25g
spark.scheduler.mode=FAIR
spark.scheduler.allocation.file=/dbfs/config/fairscheduler.xml
Adding code flow below:
implicit class PipedObject[A](value: A) {
def conditionalPipe(f: A => A)(pred: Boolean): A =
if (pred) f(value) else value
}
implicit val spark: SparkSession = SparkSession
.builder()
.appName("MyApp")
.conditionalPipe(sess => sess.master("local[6]"))(false)
.getOrCreate()
import spark.implicits._
val cookedData = getCookedStreamingData() // streaming data as input from event hub
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "cook")
cookedData.writeStream
.option("checkpointLocation", "checkpointLocation1")
.queryName("queryName1")
.format("avro")
.option("path", "dir1")
.start()
val scoredData = score(cookedData)
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "score")
scoredData.writeStream
.option("checkpointLocation", "checkpointLocation2")
.queryName("queryName2")
.format("avro")
.option("path", "dir2")
.start()
val alertData = score(scoredData)
spark.sparkContext.setLocalProperty("spark.scheduler.pool", "alert")
alertData.writeStream
.option("checkpointLocation", "checkpointLocation3")
.queryName("queryName3")
.format("avro")
.option("path", "dir3")
.start()
Sample fairScheduler.xml file:
<allocations>
<pool name="default">
<schedulingMode>FIFO</schedulingMode>
<weight>2</weight>
<minShare>2</minShare>
</pool>
<pool name="cook">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>5</minShare>
</pool>
<pool name="score">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>5</minShare>
</pool>
<pool name="alert">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>5</minShare>
</pool>
</allocations>
java.util.NoSuchElementException: None.get
is purely your scala programming bug. since there is no code snippet I could'nt able to point it.
If you are using options then before reading the element, you need to check
isDefined before using get on Option
or else you can use getOrElse() function from the Option to supply a default value.
In case you are using multiple sparkcontext it may arise...
Have a look at this... Spark Streaming Exception: java.util.NoSuchElementException: None.get
I am trying to subscribe to a Kafka topic through pyspark with the following code:
spark = SparkSession.builder.appName("Spark Structured Streaming from Kafka").getOrCreate()
lines = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("kafka.partition.assignment.strategy","range").option("subscribe", "test-events").load()
words = lines.select(explode(split(lines.value, " ")).alias("word"))
wordCounts = words.groupBy("word").count()
query = wordCounts.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()
and using the following command:
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 test_events.py
and versions for spark, kafka, java and scala:
spark=2.4.0
kafka=2.12-2.3.0
scala=2.11.12
openJDK=1.8.0_221
I keep getting the following errors:
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
Aggregate [word#26], [word#26, count(1) AS count#30L]
+- Project [word#26]
+- Generate explode(split(cast(value#8 as string), )), false, [word#26]
+- StreamingExecutionRelation KafkaV2[Subscribe[test-events]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: org.apache.kafka.common.KafkaException: Failed to construct kafka consumer
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:827)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:629)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:610)
at org.apache.spark.sql.kafka010.SubscribeStrategy.createConsumer(ConsumerStrategy.scala:62)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.consumer(KafkaOffsetReader.scala:85)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1$$anonfun$apply$9.apply(KafkaOffsetReader.scala:199)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1$$anonfun$apply$9.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply$mcV$sp(KafkaOffsetReader.scala:288)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply(KafkaOffsetReader.scala:287)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt$1.apply(KafkaOffsetReader.scala:287)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.org$apache$spark$sql$kafka010$KafkaOffsetReader$$withRetriesWithoutInterrupt(KafkaOffsetReader.scala:286)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader$$anonfun$fetchLatestOffsets$1.apply(KafkaOffsetReader.scala:197)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.runUninterruptibly(KafkaOffsetReader.scala:255)
at org.apache.spark.sql.kafka010.KafkaOffsetReader.fetchLatestOffsets(KafkaOffsetReader.scala:196)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader$$anonfun$getOrCreateInitialPartitionOffsets$1.apply(KafkaMicroBatchReader.scala:195)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader$$anonfun$getOrCreateInitialPartitionOffsets$1.apply(KafkaMicroBatchReader.scala:190)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.getOrCreateInitialPartitionOffsets(KafkaMicroBatchReader.scala:190)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.org$apache$spark$sql$kafka010$KafkaMicroBatchReader$$initialPartitionOffsets$lzycompute(KafkaMicroBatchReader.scala:83)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.org$apache$spark$sql$kafka010$KafkaMicroBatchReader$$initialPartitionOffsets(KafkaMicroBatchReader.scala:83)
at org.apache.spark.sql.kafka010.KafkaMicroBatchReader.setOffsetRange(KafkaMicroBatchReader.scala:87)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply$mcV$sp(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5$$anonfun$apply$2.apply(MicroBatchExecution.scala:353)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5.apply(MicroBatchExecution.scala:349)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1$$anonfun$5.apply(MicroBatchExecution.scala:341)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.AbstractTraversable.map(Traversable.scala:104)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply$mcZ$sp(MicroBatchExecution.scala:341)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch$1.apply(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.withProgressLocked(MicroBatchExecution.scala:554)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$constructNextBatch(MicroBatchExecution.scala:337)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:183)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:166)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
... 1 more
Caused by: org.apache.kafka.common.KafkaException: range ClassNotFoundException exception occurred
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:425)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:400)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:387)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:772)
... 50 more
Caused by: java.lang.ClassNotFoundException: range
at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:348)
at org.apache.kafka.common.utils.Utils.loadClass(Utils.java:348)
at org.apache.kafka.common.utils.Utils.newInstance(Utils.java:337)
at org.apache.kafka.common.config.AbstractConfig.getConfiguredInstances(AbstractConfig.java:423)
... 53 more
During handling of the above exception, another exception occurred:
pyspark.sql.utils.StreamingQueryException: 'Failed to construct kafka consumer\n=== Streaming Query ===\nIdentifier: [id = 671c0c25-2f29-49f9-8698-c59a89626da7, runId = 37b4d397-4338-4416-a521-384c8853e99b]\nCurrent Committed Offsets: {}\nCurrent Available Offsets: {}\n\nCurrent State: ACTIVE\nThread State: RUNNABLE\n\nLogical Plan:\nAggregate [word#26], [word#26, count(1) AS count#30L]\n+- Project [word#26]\n +- Generate explode(split(cast(value#8 as string), )), false, [word#26]\n +- StreamingExecutionRelation KafkaV2[Subscribe[test-events]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]\n'
2020-02-07 10:03:38 INFO SparkContext:54 - Invoking stop() from shutdown hoo
There are multiple similar questions online but no answer has worked for me so far.
I have also tried the above with spark 2.4.4 with the following:
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.4 test_events.py
but I keep getting the same errors.
Try changing the kafka.partition.assignment.strategy to roundrobin from range and see if it works.
lines = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("kafka.partition.assignment.strategy","roundrobin").option("subscribe", "test-events").load()
If it doesnt works even after that then try adding kafka-clients-0.10.0.1.jar while submitting the spark job.
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.0 --jars local:///root/sources/jars/kafka-clients-0.10.0.1.jar --driver-class-path local:///root/sources/jars/kafka-clients-0.10.0.1.jar test_events.py
Solved with the following:
kafka version 2.12-2.2.0
spark 2.4.0-bin-hadoop2.7
scala 2.11.12
java.lang.ClassNotFoundException: range
Unless you explicitly need the assignment strategy, then remove the option.
Otherwise, it must be the fully qualified Java class name
This error can also be drawn when you provide a faulty value for kafka.bootstrap.servers. This could be a non-existent broker/port, or even a broker list in list form, as opposed to string form. Meaning, ["broker1:9092", "broker2:9092"] instead of "broker1:9092,broker2:9092".
Depending on where you are running the code, the true cause of the error can be hidden, as well.
Here's the error in Jupyter
StreamingQueryException: Failed to construct kafka consumer
=== Streaming Query ===
Identifier: [id = 39eb0e9d-9487-4838-9d15-241645a04cb6, runId = 763acdcb-bc05-4428-87e1-7b56ae736423]
Current Committed Offsets: {KafkaV2[Subscribe[fd]]: {"fd":{"2":4088,"1":4219,"0":4225}}}
Current Available Offsets: {KafkaV2[Subscribe[fd]]: {"fd":{"2":4088,"1":4219,"0":4225}}}
Current State: ACTIVE
Thread State: RUNNABLE
Logical Plan:
WriteToMicroBatchDataSource org.apache.spark.sql.kafka010.KafkaStreamingWrite#457e8cfa
+- StreamingDataSourceV2Relation [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13], org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaScan#2b34a4 79, KafkaV2[Subscribe[fd]]
No mention of any problems with the broker list... Now here's the same error via spark-submit:
2021-08-13 20:30:44,377 WARN kafka010.KafkaOffsetReaderConsumer: Error in attempt 3 getting Kafka offsets:
org.apache.kafka.common.KafkaException: Failed to construct kafka consumer
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:823)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:632)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:613)
at org.apache.spark.sql.kafka010.SubscribeStrategy.createConsumer(ConsumerStrategy.scala:107)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.consumer(KafkaOffsetReaderConsumer.scala:82)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$partitionsAssignedToConsumer$2(KafkaOffsetReaderConsumer.scala:533)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$withRetriesWithoutInterrupt$1(KafkaOffsetReaderConsumer.scala:578)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.withRetriesWithoutInterrupt(KafkaOffsetReaderConsumer.scala:577)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.$anonfun$partitionsAssignedToConsumer$1(KafkaOffsetReaderConsumer.scala:531)
at org.apache.spark.util.UninterruptibleThreadRunner.runUninterruptibly(UninterruptibleThreadRunner.scala:48)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.partitionsAssignedToConsumer(KafkaOffsetReaderConsumer.scala:531)
at org.apache.spark.sql.kafka010.KafkaOffsetReaderConsumer.fetchLatestOffsets(KafkaOffsetReaderConsumer.scala:311)
at org.apache.spark.sql.kafka010.KafkaMicroBatchStream.latestOffset(KafkaMicroBatchStream.scala:87)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$3(MicroBatchExecution.scala:394)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:357)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:355)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$2(MicroBatchExecution.scala:385)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.immutable.Map$Map1.foreach(Map.scala:128)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$constructNextBatch$1(MicroBatchExecution.scala:382)
at scala.runtime.java8.JFunction0$mcZ$sp.apply(JFunction0$mcZ$sp.java:23)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.withProgressLocked(MicroBatchExecution.scala:613)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.constructNextBatch(MicroBatchExecution.scala:378)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:211)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:357)
at org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:355)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:68)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:194)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:57)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:188)
at org.apache.spark.sql.execution.streaming.StreamExecution.$anonfun$runStream$1(StreamExecution.scala:334)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:317)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:244)
Important part!
Caused by: org.apache.kafka.common.config.ConfigException: Invalid url in bootstrap.servers: ['192.168.1.162:9092'
at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:59)
at org.apache.kafka.clients.ClientUtils.parseAndValidateAddresses(ClientUtils.java:48)
at org.apache.kafka.clients.consumer.KafkaConsumer.<init>(KafkaConsumer.java:734)
... 41 more
Change kafka.bootstrap.servers from ["192.168.1.162:9092","192.168.1.161:9092","192.168.1.160:9092"] to "192.168.1.162:9092,192.168.1.161:9092,192.168.1.160:9092" and all is well.
Confirm by using kafkacat to ensure that your broker is where you are saying it is.
e.g. kafkacat -C -b 192.168.1.162:9092,192.168.1.161:9092 -t fd
Version Info:
Spark 3.1.2
PySpark 3.1.1
Key .jars:
sparkSesh = SparkSession.builder.config("spark.driver.extraClassPath", "/home/username/jars/spark-sql-kafka-0-10_2.12-3.1.2.jar,/home/username/jars/commons-pool2-2.11.0.jar")\ .appName("Kafka to Stream") \ .master("local[*]").getOrCreate()
I am running below code , in the Failure part , i am printing exception stack trace as INFO in yarn log . My code has syntax error in sql so that an exception will be generated .But when i see yarn log it shows some thing unexpected as below saying "call methods on a stopped SparkContext" . Need help on this , If i am doing anything wrong .
Code Snipet:-
var ret:String= Try {
DbUtil.dropTable("cls_mkt_tracker_split_rownum", batchDatabase)
SparkEnvironment.hiveContext.sql(
s"""CREATE TABLE ${batchDatabase}.CLS_MKT_TRACKER_SPLIT_ROWNUM
AS SELECT ROW_NUMBER() OVER(PARTITION BY XREF_IMS_PAT_NBR,MOLECULE ORER BY IMS_DSPNSD_DT ) AS ROWNUM,*
FROM ${batchDatabase}.CLS_MKT_TRACKER_SPLIT
""")
true
} match {
case Success (b:Boolean) => ""
case Failure (t :Throwable) => logger.info("I am in failure" + t.getMessage + t.getStackTraceString) ; "failure return"
}
Yarn Log:-
16/12/13 11:19:42 INFO SessionState: No Tez session required at this point. hive.execution.engine=mr.
16/12/13 11:19:43 INFO DateAdjustment: I am in failureCannot call methods on a stopped SparkContext.
This stopped SparkContext was created at:
org.apache.spark.SparkContext.<init>(SparkContext.scala:83)
SparkEnvironment$.<init>(SparkEnvironment.scala:12)
SparkEnvironment$.<clinit>(SparkEnvironment.scala)
DbUtil$.dropTable(DbUtil.scala:8)
DateAdjustment$$anonfun$1.apply$mcZ$sp(DateAdjustment.scala:126)
DateAdjustment$$anonfun$1.apply(DateAdjustment.scala:125)
DateAdjustment$$anonfun$1.apply(DateAdjustment.scala:125)
scala.util.Try$.apply(Try.scala:161)
DateAdjustment$delayedInit$body.apply(DateAdjustment.scala:125)
scala.Function0$class.apply$mcV$sp(Function0.scala:40)
scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
scala.App$$anonfun$main$1.apply(App.scala:71)
scala.App$$anonfun$main$1.apply(App.scala:71)
scala.collection.immutable.List.foreach(List.scala:318)
scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:32)
scala.App$class.main(App.scala:71)
DateAdjustment$.main(DateAdjustment.scala:14)
DateAdjustment.main(DateAdjustment.scala)
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
The currently active SparkContext was created at:
(No active SparkContext.)
org.apache.spark.SparkContext.org$apache$spark$SparkContext$$assertNotStopped(SparkContext.scala:107)
I investigated and found , at one place of my application, SC.stop() has been called and it was causing the issue .
I want to build query on Hive Table (table name : 'sample') using pyspark sql.
Following is the simple pyspark code I compiled on pyspark shell
From pyspark.sql import HiveContext
sqlContext = HiveContext(sc)
sqlContext.sql("SELECT * FROM sample").collect()
Following is the error I have encountered :
15/12/04 11:15:20 WARN SparkConf: The configuration key
'spark.yarn.applicationMaster.waitTries' has been deprecated as of Spark 1.3 and and may be removed in the future. Please use the new key 'spark.yarn.am.waitTime' instead.
15/12/04 11:15:21 INFO HiveContext: Initializing execution hive, version 0.13.1
15/12/04 11:15:21 INFO metastore: Trying to connect to metastore with URI thrift://maprecruit.server1:9083
15/12/04 11:15:21 INFO metastore: Connected to metastore.
15/12/04 11:15:23 WARN DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.
15/12/04 11:15:23 INFO SessionState: No Tez session required at this point. hive.execution.engine=mr.
15/12/04 11:15:23 INFO ParseDriver: Parsing command: SELECT * FROM sample
15/12/04 11:15:24 INFO ParseDriver: Parse Completed
15/12/04 11:15:24 INFO HiveContext: Initializing HiveMetastoreConnection version 0.13.1 using Spark classes.
15/12/04 11:15:29 ERROR log: error in initSerDe: java.lang.ClassNotFoundException Class org.apache.hadoop.hive.hbase.HBaseSerDe not found
java.lang.ClassNotFoundException: Class org.apache.hadoop.hive.hbase.HBaseSerDe not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2101)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer(MetaStoreUtils.java:337)
at org.apache.hadoop.hive.ql.metadata.Table.getDeserializerFromMetaStore(Table.java:288)
at org.apache.hadoop.hive.ql.metadata.Table.getDeserializer(Table.java:281)
at org.apache.hadoop.hive.ql.metadata.Table.getCols(Table.java:631)
at org.apache.hadoop.hive.ql.metadata.Table.checkValidity(Table.java:189)
at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1017)
at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$getTableOption$1.apply(ClientWrapper.scala:202)
at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$getTableOption$1.apply(ClientWrapper.scala:198)
at org.apache.spark.sql.hive.client.ClientWrapper.withHiveState(ClientWrapper.scala:156)
at org.apache.spark.sql.hive.client.ClientWrapper.getTableOption(ClientWrapper.scala:198)
at org.apache.spark.sql.hive.client.ClientInterface$class.getTable(ClientInterface.scala:112)
at org.apache.spark.sql.hive.client.ClientWrapper.getTable(ClientWrapper.scala:61)
at org.apache.spark.sql.hive.HiveMetastoreCatalog.lookupRelation(HiveMetastoreCatalog.scala:227)
at org.apache.spark.sql.hive.HiveContext$$anon$2.org$apache$spark$sql$catalyst$analysis$OverrideCatalog$$super$lookupRelation(HiveContext.scala:373)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:165)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:165)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$class.lookupRelation(Catalog.scala:165)
at org.apache.spark.sql.hive.HiveContext$$anon$2.lookupRelation(HiveContext.scala:373)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:222)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:233)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:229)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:221)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:242)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:227)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:212)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:229)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:219)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:61)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:59)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:51)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:933)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:933)
at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:931)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:131)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:51)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:755)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/hdp/2.3.2.0-2950/spark/python/pyspark/sql/context.py", line 502, in sql
return DataFrame(self._ssql_ctx.sql(sqlQuery), self)
File "/usr/hdp/2.3.2.0-2950/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/usr/hdp/2.3.2.0-2950/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o35.sql.
: java.lang.RuntimeException: MetaException(message:java.lang.ClassNotFoundException Class org.apache.hadoop.hive.hbase.HBaseSerDe not found)
at org.apache.hadoop.hive.ql.metadata.Table.getDeserializerFromMetaStore(Table.java:290)
at org.apache.hadoop.hive.ql.metadata.Table.getDeserializer(Table.java:281)
at org.apache.hadoop.hive.ql.metadata.Table.getCols(Table.java:631)
at org.apache.hadoop.hive.ql.metadata.Table.checkValidity(Table.java:189)
at org.apache.hadoop.hive.ql.metadata.Hive.getTable(Hive.java:1017)
at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$getTableOption$1.apply(ClientWrapper.scala:202)
at org.apache.spark.sql.hive.client.ClientWrapper$$anonfun$getTableOption$1.apply(ClientWrapper.scala:198)
at org.apache.spark.sql.hive.client.ClientWrapper.withHiveState(ClientWrapper.scala:156)
at org.apache.spark.sql.hive.client.ClientWrapper.getTableOption(ClientWrapper.scala:198)
at org.apache.spark.sql.hive.client.ClientInterface$class.getTable(ClientInterface.scala:112)
at org.apache.spark.sql.hive.client.ClientWrapper.getTable(ClientWrapper.scala:61)
at org.apache.spark.sql.hive.HiveMetastoreCatalog.lookupRelation(HiveMetastoreCatalog.scala:227)
at org.apache.spark.sql.hive.HiveContext$$anon$2.org$apache$spark$sql$catalyst$analysis$OverrideCatalog$$super$lookupRelation(HiveContext.scala:373)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:165)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$$anonfun$lookupRelation$3.apply(Catalog.scala:165)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.catalyst.analysis.OverrideCatalog$class.lookupRelation(Catalog.scala:165)
at org.apache.spark.sql.hive.HiveContext$$anon$2.lookupRelation(HiveContext.scala:373)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:222)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:233)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:229)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:222)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:51)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:221)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:242)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:227)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:212)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:229)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:219)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:61)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:59)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:59)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:51)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:51)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed$lzycompute(SQLContext.scala:933)
at org.apache.spark.sql.SQLContext$QueryExecution.analyzed(SQLContext.scala:933)
at org.apache.spark.sql.SQLContext$QueryExecution.assertAnalyzed(SQLContext.scala:931)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:131)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:51)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:755)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
Caused by: MetaException(message:java.lang.ClassNotFoundException Class org.apache.hadoop.hive.hbase.HBaseSerDe not found)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer(MetaStoreUtils.java:346)
at org.apache.hadoop.hive.ql.metadata.Table.getDeserializerFromMetaStore(Table.java:288)
... 67 more
I know that i'm lost in configuration part. Can anyone help out with configuration part?
PS: I'm using Hortonworks Ambari HDP-2.2
Hive proprietary SerDes typically does not work in Spark (example HBase, ORC).
Give a try with pyspark-hbase