First element of each dataframe partition Spark 2.0 - apache-spark

I need to retrieve the first element of each dataframe partition.
I know that I need to use mapPartitions but it is not clear for me how to use it.
Note: I am using Spark2.0, the dataframe is sorted.

I believe it should look something like following:
import org.apache.spark.sql.catalyst.encoders.RowEncoder
...
implicit val encoder = RowEncoder(df.schema)
val newDf = df.mapPartitions(iterator => iterator.take(1))
This will take 1 element from each partition in DataFrame. Then you can collect all the data to your driver i.e.:
nedDf.collect()
This will return you an array with a number of elements equal to number of your partitions.
UPD updated in order to support Spark 2.0

Related

Spark scala partition dataframe for large cross joins

I have two dataframes that need to be cross joined on a 20-node cluster. However because of their size, a simple crossjoin is failing. I am looking to partition the data and perform the crossjoin and am looking for an efficient way to do it.
Simple Algorithm
Manually split file f1 into three and read into dataframes: df1A, df1B, df1C. Manually split file f2 into four and ready into dataframes: df2A, df2B, df2C, df2D. Cross join df1A X df2A, df1A X df2B,..,df1A X df2D,...,df1C X df2D. Save each cross join in a file and manually put together all files. This way Spark can perform each cross join parallely and things should complete fairly quickly.
Question
Is there is more efficient way of accomplishing this by reading both files into two dataframes, then partitioning each dataframe into 3 and 4 "pieces" and for each partition of one dataframe cross join with every partition of the other dataframe?
Data frame can be partitioned ether range or hash .
val df1 = spark.read.csv("file1.txt")
val df2 = spark.read.csv("file2.txt")
val partitionedByRange1 = df1.repartitionByRange(3, $"k")
val partitionedByRange2 = df2.repartitionByRange(4, $"k")
val result =partitionedByRange1.crossJoin(partitionedByRange2);
NOTE : set property spark.sql.crossJoin.enabled=true
You can convert this in to a rdd and then use cartesian operation on that RDD. You should then be able to save that RDD to a file. Hope that helps

Partitioning of Data Frame in Pyspark using Custom Partitioner

Looking for some info on using custom partitioner in Pyspark. I have a dataframe holding country data for various countries. So if I do repartition on country column, it will distribute my data into n partitions and keeping similar country data to specific partitions. This is creating a skew partition data when I see using glom() method.
Some countries like USA and CHN has huge amount of data in particular dataframe. I want to repartition my dataframe such that if the countries are USA and CHN then it will further split into some 10 partitions else keep the partitions same for other countries like IND, THA, AUS etc. Can we extend partitioner class in Pyspark code.
I have read this in below link that we can extend scala partitioner class in scala Spark application and can modify the partitioner class to use custom logic to repartition our data on base of requirements. Like the one I have.. please help to achieve this solution in Pyspark.. See the link below What is an efficient way to partition by column but maintain a fixed partition count?
I am using Spark version 2.3.0.2 and below is my Dataframe structure:
datadf= spark.sql("""
SELECT
ID_NUMBER ,SENDER_NAME ,SENDER_ADDRESS ,REGION_CODE ,COUNTRY_CODE
from udb.sometable
""");
The incoming data has data for six countries, like AUS, IND, THA, RUS, CHN and USA.
CHN and USA has skew data.
so if I do repartition on COUNTRY_CODE, two partitions contains a lot data whereas others are fine. I checked this using glom() method.
newdf = datadf.repartition("COUNTRY_CODE")
from pyspark.sql import SparkSession
from pyspark.sql import HiveContext, DataFrameWriter, DataFrame
newDF = datadf.repartitionByRange(3,"COUNTRY_CODE","USA")
I was trying repartition my data into 3 more partitions for country USA and CHN only and would like to keep the other countries data into single partition.
This is what I am expecting
AUS- one partition
IND- one partition
THA- one partition
RUS- one partition
CHN- three partition
USA- three partition
Traceback (most recent call last): File "", line 1, in
File
"/usr/hdp/current/spark2-client/python/pyspark/sql/dataframe.py", line
1182, in getattr
"'%s' object has no attribute '%s'" % (self.class.name, name)) AttributeError: 'DataFrame' object has no attribute
'repartitionByRange'
Try something like this with hashing:
newDf = oldDf.repartition(N, $"col1", $"coln")
or for ranging approach:
newDF = oldDF.repartitionByRange(N, $"col1", $"coln")
There is no custom partitioning for DF's just yet.
In your case I would go for hashing, but there are no guarantees.
But if your data is skew you may need some extra work, like 2 columns for partitioning being the simplest approach.
E.g. an existing or new column - in this case a column that applies a grouping against a given country, e.g. 1 .. N, and the partition on two cols.
For countries with many grouping you get N synthetic sub divisions; for others with low cardinality, only with 1 such group number. Not too hard. Both partitioning can take more than 1 col.
In my view uniform number filling of partitions takes a lot of effort and not really attainable, but a next best approach as in this here can suffice well enough. Amounts to custom partitioning to an extent.
Otherwise, using .withColumn on a DF you can simulate custom partitioning with those rules and filling of a new DF column and then apply the repartitionByRange. Also not so hard.
There is no custom partitioner in Structured API, so in order to use custom partitioner, you'll need to drop down to RDD API. Simple 3 steps as follows:
Convert Structured API to RDD API
dataRDD = dataDF.rdd
Apply custom partitioner in RDD API
import random
# Extract key from Row object
dataRDD = dataRDD.map(lambda r: (r[0], r))
def partitioner(key):
if key == "CHN":
return random.randint(1, 10)
elif key == "USA":
return random.randint(11, 20)
else:
# distinctCountryDict is a dict mapping distinct countries to distinct integers
# these distinct integers should not overlap with range(1, 20)
return distinctCountryDict[key]
numPartitions = 100
dataRDD = dataRDD.partitionBy(numPartitions, partitioner)
# Remove key extracted previously
dataRDD = dataRDD.map(lambda r: r[1])
Convert RDD API back to Structured API
dataDF = dataRDD.toDF()
This way, you get the best of both worlds, Spark types and optimized physical plan in Structured API, as well as custom partitioner in low-level RDD API. And we only drop down to low-level API only when it's absolutely necessary.
There is no direct way to apply user defined partitioner on PySpark, the short cut is to create a new column with a UDF, assigning each record with a partition ID based on the business logic. And use the new column for partitioning, that way the data gets spread evenly.
numPartitions= 3
df = df.withColumn("Hash#", udf_country_hash(df['Country']))
df = df.withColumn("Partition#", df["Hash#"] % numPartitions)
df.repartition(numPartitions, "Partition#")
Please check the online version of code #
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8963851468310921/2231943684776180/5846184720595634/latest.html
In my experience converting DataFrame to RDD and back to DataFrame is a costly operation, better to avoid it.

spark collect as Array[T] and not as Array[Row] from data frame

I can collect a column like this using the RDD API.
df.map(r => r.getAs[String]("column")).collect
However, as I am initially using a Dataset I rather would like to not switch the API level. A simple df.select("column).collect returns an Array[Row] where the .flatten operator no longer works.
How can I collect to Array[T e.g. String] directly?
With Datasets ( Spark version >= 2.0.0 ), you just need to convert the dataframe to dataset and then collect it.
df.select("column").as[String].collect()
would return you an Array[String]

Spark DataTables: where is partitionBy?

A common Spark processing flow we have is something like this:
Loading:
rdd = sqlContext.parquetFile("mydata/")
rdd = rdd.map(lambda row: (row.id,(some stuff)))
rdd = rdd.filter(....)
rdd = rdd.partitionBy(rdd.getNumPatitions())
Processing by id (this is why we do the partitionBy above!)
rdd.reduceByKey(....)
rdd.join(...)
However, Spark 1.3 changed sqlContext.parquetFile to return DataFrame instead of RDD, and it no longer has the partitionBy, getNumPartitions, and reduceByKey methods.
What do we do now with partitionBy?
We can replace the loading code with something like
rdd = sqlContext.parquetFile("mydata/").rdd
rdd = rdd.map(lambda row: (row.id,(some stuff)))
rdd = rdd.filter(....)
rdd = rdd.partitionBy(rdd.getNumPatitions())
df = rdd.map(lambda ...: Row(...)).toDF(???)
and use groupBy instead of reduceByKey.
Is this the right way?
PS. Yes, I understand that partitionBy is not necessary for groupBy et al. However, without a prior partitionBy, each join, groupBy &c may have to do cross-node operations. I am looking for a way to guarantee that all operations requiring grouping by my key will run local.
It appears that, since version 1.6, repartition(self, numPartitions, *cols) does what I need:
.. versionchanged:: 1.6
Added optional arguments to specify the partitioning columns.
Also made numPartitions optional if partitioning columns are specified.
Since DataFrame provide us an abstraction of Table and Column over RDD, the most convenient way to manipulate DataFrame is to use these abstraction along with the specific table manipulations methods that DataFrame enables us.
On a DataFrame, we could:
transform the table schema with select() \ udf() \ as()
filter rows out by filter() or where()
fire an aggregation through groupBy() and agg()
or other analytic job using sample() \ join() \ union()
persist your result using saveAsTable() \ saveAsParquet() \ insertIntoJDBC()
Please refer to Spark SQL and DataFrame Guide for more details.
Therefore, a common job looks like:
val people = sqlContext.parquetFile("...")
val department = sqlContext.parquetFile("...")
people.filter("age > 30")
.join(department, people("deptId") === department("id"))
.groupBy(department("name"), "gender")
.agg(avg(people("salary")), max(people("age")))
And for your specific requirements, this could look like:
val t = sqlContext.parquetFile()
t.filter().select().groupBy().agg()

How Can I Obtain an Element Position in Spark's RDD?

I am new to Apache Spark, and I know that the core data structure is RDD. Now I am writing some apps which require element positional information. For example, after converting an ArrayList into a (Java)RDD, for each integer in RDD, I need to know its (global) array subscript. Is it possible to do it?
As I know, there is a take(int) function for RDD, so I believe the positional information is still maintained in RDD.
I believe in most cases, zipWithIndex() will do the trick, and it will preserve the order. Read the comments again. My understanding is that it exactly means keep the order in the RDD.
scala> val r1 = sc.parallelize(List("a", "b", "c", "d", "e", "f", "g"), 3)
scala> val r2 = r1.zipWithIndex
scala> r2.foreach(println)
(c,2)
(d,3)
(e,4)
(f,5)
(g,6)
(a,0)
(b,1)
Above example confirm it. The red has 3 partitions, and a with index 0, b with index 1, etc.
Essentially, RDD's zipWithIndex() method seems to do this, but it won't preserve the original ordering of the data the RDD was created from. At least you'll get a stable ordering.
val orig: RDD[String] = ...
val indexed: RDD[(String, Long)] = orig.zipWithIndex()
The reason you're unlikely to find something that preserves the order in the original data is buried in the API doc for zipWithIndex():
"Zips this RDD with its element indices. The ordering is first based
on the partition index and then the ordering of items within each
partition. So the first item in the first partition gets index 0, and
the last item in the last partition receives the largest index. This
is similar to Scala's zipWithIndex but it uses Long instead of Int as
the index type. This method needs to trigger a spark job when this RDD
contains more than one partitions."
So it looks like the original order is discarded. If preserving the original order is important to you, it looks like you need to add the index before you create the RDD.

Resources