I am copying the pyspark.ml example from the official document website:
http://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.Transformer
data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),(Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
df = spark.createDataFrame(data, ["features"])
kmeans = KMeans(k=2, seed=1)
model = kmeans.fit(df)
However, the example above wouldn't run and gave me the following errors:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-28-aaffcd1239c9> in <module>()
1 from pyspark import *
2 data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),(Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
----> 3 df = spark.createDataFrame(data, ["features"])
4 kmeans = KMeans(k=2, seed=1)
5 model = kmeans.fit(df)
NameError: name 'spark' is not defined
What additional configuration/variable needs to be set to get the example running?
You can add
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
sc = SparkContext('local')
spark = SparkSession(sc)
to the begining of your code to define a SparkSession, then the spark.createDataFrame() should work.
Answer by 率怀一 is good and will work for the first time.
But the second time you try it, it will throw the following exception :
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=pyspark-shell, master=local) created by __init__ at <ipython-input-3-786525f7559f>:10
There are two ways to avoid it.
1) Using SparkContext.getOrCreate() instead of SparkContext():
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
sc = SparkContext.getOrCreate()
spark = SparkSession(sc)
2) Using sc.stop() in the end, or before you start another SparkContext.
Since you are calling createDataFrame(), you need to do this:
df = sqlContext.createDataFrame(data, ["features"])
instead of this:
df = spark.createDataFrame(data, ["features"])
spark stands there as the sqlContext.
In general, some people have that as sc, so if that didn't work, you could try:
df = sc.createDataFrame(data, ["features"])
You have to import the spark as following if you are using python then it will create
a spark session but remember it is an old method though it will work.
from pyspark.shell import spark
If it errors you regarding other open session do this:
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
sc = SparkContext.getOrCreate();
spark = SparkSession(sc)
scraped_data=spark.read.json("/Users/reihaneh/Desktop/nov3_final_tst1/")
Related
I have the following code snippet in pyspark:
import pandas as pd
from pyspark import SparkContext, SparkConf
from pyspark.context import SparkContext
from pyspark.sql import Row, SQLContext, SparkSession
import pyspark.sql.dataframe
def validate_data():
conf = SparkConf().setAppName("app")
spark = SparkContext(conf=conf)
config = {
"val_path" : "s3://forecasting/data/validation.csv"
}
data1_df = spark.read.table("db1.data_dest”)
data2_df = spark.read.table("db2.data_source”)
print(data1_df.count())
print(data2_df.count())
if __name__ == "__main__":
validate_data()
Now this code works fine when run on jupyter notebook on sagemaker ( connecting to EMR )
but when we are running as a python script on terminal, its throwing this error
Error message
AttributeError: 'SparkContext' object has no attribute 'read'
We have to automate these notebooks, so we are trying to convert them to python scripts
You can only call read on a Spark Session, not on a Spark Context.
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
conf = SparkConf().setAppName("app")
spark = SparkSession.builder.config(conf=conf)
Or you can convert the Spark context to a Spark session
conf = SparkConf().setAppName("app")
sc = SparkContext(conf=conf)
spark = SparkSession(sc)
Good morning
When running:
from pyspark.sql.types import IntegerType
import pyspark.sql.functions as F
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
class ETL:
def addone(x):
return x + 1
def job_run():
df = spark.sql('SELECT 1 one').withColumn('AddOne', udf_addone(F.col('one')))
df.show()
if (__name__ == '__main__'):
udf_addone = F.udf(lambda x: ETL.addone(x), returnType=IntegerType())
ETL.job_run()
I get the following error message:
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
I have reviewed the answers given at ERROR:SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063 and at Spark: Broadcast variables: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforamtion with no success. I'd like to stick to using spark udf in my script.
Any help on this is appreciated.
Many thanks!
I am trying yo run a Keras model for a binary text classification using Elephas in Apache Spark. Below is the my code:
#my initial spark statements
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext
conf = SparkConf().setAppName('Elephas_App').setMaster('local[4]')
sc = SparkContext(conf=conf)
sql_context = SQLContext(sc)
#SQLcontext is created using sc for realational functionality
sql_context = SQLContext(sc)
#elephas estimator parameters
optimizer_conf = optimizers.Adam(lr = 0.01)
opt_conf = optimizers.serialize(optimizer_conf)
estimator = ElephasEstimator()
estimator.set_keras_model_config(model.to_yaml())
estimator.set_categorical_labels(True)
estimator.set_nb_classes(tar_class)
estimator.set_num_workers(1)
estimator.set_epochs(5)
estimator.set_batch_size(64)
estimator.setFeaturesCol("features")
estimator.setLabelCol("label")
estimator.set_verbosity(1)
estimator.set_validation_split(0.10)
estimator.set_optimizer_config(opt_conf)
estimator.set_mode("synchronous")
estimator.set_loss("binary_crossentrophy")
estimator.set_metrics(["acc"])
I am facing with the following issue:
AttributeError Traceback (most recent call last)
<ipython-input-92-74397f47b924> in <module>()
7 estimator.set_epochs(5)
8 estimator.set_batch_size(64)
----> 9 estimator.setFeaturesCol("features")
10 estimator.setLabelCol("label")
11 estimator.set_verbosity(1)
AttributeError: 'ElephasEstimator' object has no attribute 'setFeaturesCol'
This issue exists for both "setFeaturesCol" and "setLabelCol".
Can anyone please help me as I am new to this?
Thanks in advance!
The HasLabelCol and HasFeaturesCols mixins were changed in Spark 3.0.x+ to remove the setter methods, hence the issue. The featuresCol and labelCol can be supplied in the ElephasEstimator constructor:
ElephasEstimator(featuresCol='features', labelCol='label')
However, in your application, this shouldn't be necessary, as the default feature column is 'features' and the default label column is 'label' - you should be able to omit those lines and run as normal.
I am trying to read data from BigQuery using pandas and pyspark. I am able to get the data but somehow getting below error while converting it into Spark DataFrame.
py4j.protocol.Py4JJavaError: An error occurred while calling o28.showString.
: java.lang.IllegalStateException: Could not find TLS ALPN provider; no working netty-tcnative, Conscrypt, or Jetty NPN/ALPN available
at com.google.cloud.spark.bigquery.repackaged.io.grpc.netty.shaded.io.grpc.netty.GrpcSslContexts.defaultSslProvider(GrpcSslContexts.java:258)
at com.google.cloud.spark.bigquery.repackaged.io.grpc.netty.shaded.io.grpc.netty.GrpcSslContexts.configure(GrpcSslContexts.java:171)
at com.google.cloud.spark.bigquery.repackaged.io.grpc.netty.shaded.io.grpc.netty.GrpcSslContexts.forClient(GrpcSslContexts.java:120)
at com.google.cloud.spark.bigquery.repackaged.io.grpc.netty.shaded.io.grpc.netty.NettyChannelBuilder.buildTransportFactory(NettyChannelBuilder.java:401)
at com.google.cloud.spark.bigquery.repackaged.io.grpc.internal.AbstractManagedChannelImplBuilder.build(AbstractManagedChannelImplBuilder.java:444)
at com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.grpc.InstantiatingGrpcChannelProvider.createSingleChannel(InstantiatingGrpcChannelProvider.java:223)
at com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.grpc.InstantiatingGrpcChannelProvider.createChannel(InstantiatingGrpcChannelProvider.java:169)
at com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.grpc.InstantiatingGrpcChannelProvider.getTransportChannel(InstantiatingGrpcChannelProvider.java:156)
at com.google.cloud.spark.bigquery.repackaged.com.google.api.gax.rpc.ClientContext.create(ClientContext.java:157)
Following is the environment detail
Python version : 3.7
Spark version : 2.4.3
Java version : 1.8
The code is as follow
import google.auth
import pyspark
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession , SQLContext
from google.cloud import bigquery
# Currently this only supports queries which have at least 10 MB of results
QUERY = """ SELECT * FROM test limit 1 """
#spark = SparkSession.builder.appName('Query Results').getOrCreate()
sc = pyspark.SparkContext()
bq = bigquery.Client()
print('Querying BigQuery')
project_id = ''
query_job = bq.query(QUERY,project=project_id)
# Wait for query execution
query_job.result()
df = SQLContext(sc).read.format('bigquery') \
.option('dataset', query_job.destination.dataset_id) \
.option('table', query_job.destination.table_id)\
.option("type", "direct")\
.load()
df.show()
I am looking some help to solve this issue.
I managed to find the better solution referencing this link , below is my working code :
Install pandas_gbq package in python library before writing below code .
import pandas_gbq
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
project_id = "<your-project-id>"
query = """ SELECT * from testSchema.testTable"""
athletes = pandas_gbq.read_gbq(query=query, project_id=project_id,dialect = 'standard')
# Get a reference to the Spark Session
sc = SparkContext()
spark = SparkSession(sc)
# convert from Pandas to Spark
sparkDF = spark.createDataFrame(athletes)
# perform an operation on the DataFrame
print(sparkDF.count())
sparkDF.show()
Hope it helps to someone ! Keep pysparking :)
I'm new in pyspark. I would like to perform some machine Learning on a text file.
from pyspark import Row
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from pyspark import SparkConf
sc = SparkContext
spark = SparkSession.builder.appName("ML").getOrCreate()
train_data = spark.read.text("20ng-train-all-terms.txt")
td= train_data.rdd #transformer df to rdd
tr_data= td.map(lambda line: line.split()).map(lambda words: Row(label=words[0],words=words[1:]))
from pyspark.ml.feature import CountVectorizer
vectorizer = CountVectorizer(inputCol ="words", outputCol="bag_of_words")
vectorizer_transformer = vectorizer.fit(td)
and for my last command, i obtain the error
"AttributeError: 'RDD' object has no attribute '_jdf'
enter image description here
can anyone help me please.
thank you
You shouldn't be using rdd with CountVectorizer. Instead you should try to form the array of words in the dataframe itself as
train_data = spark.read.text("20ng-train-all-terms.txt")
from pyspark.sql import functions as F
td= train_data.select(F.split("value", " ").alias("words")).select(F.col("words")[0].alias("label"), F.col("words"))
from pyspark.ml.feature import CountVectorizer
vectorizer = CountVectorizer(inputCol="words", outputCol="bag_of_words")
vectorizer_transformer = vectorizer.fit(td)
And then it should work so that you can call transform function as
vectorizer_transformer.transform(td).show(truncate=False)
Now, if you want to stick to the old style of converting to the rdd style then you have to modify certain lines of code. Following is the modified complete code (working) of yours
from pyspark import Row
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from pyspark import SparkConf
sc = SparkContext
spark = SparkSession.builder.appName("ML").getOrCreate()
train_data = spark.read.text("20ng-train-all-terms.txt")
td= train_data.rdd #transformer df to rdd
tr_data= td.map(lambda line: line[0].split(" ")).map(lambda words: Row(label=words[0], words=words[1:])).toDF()
from pyspark.ml.feature import CountVectorizer
vectorizer = CountVectorizer(inputCol="words", outputCol="bag_of_words")
vectorizer_transformer = vectorizer.fit(tr_data)
But I would suggest you to stick with dataframe way.