Why not include CSRF protection for GET apis? - security

I was reading up on CSRF and came across this question: https://security.stackexchange.com/questions/36671/csrf-token-in-get-request
Multiple people online have also seem to indicate that one should not protect GET requests against CSRF. However, I am confused by why.
If your GET request contains sensitive information (like say personal info for a user), then you would want to protect it against CSRF right? Otherwise an attacker can steal personal info.
I get that you shouldn't include the token in the GET URL because those may be logged. However, can't you just include them in a custom header?

CRSF attacks are blind. They typically send a request without being able to read the result of the action. The reason here is the Same Origin Policy.
SOP prevents you from reading RESPONSES received by other origins, meaning that you can't access the private stuff anyways.
CRSF protection instead protects REQUESTS in the sense that it adds a token which symbolizes that the request is started by the web app itself

Related

Do I need to use CSRF tokens in a cookie-based API?

I have an API in Next.js (NextAuth.js) that only the frontend will be using. It uses cookies for authentication. My question is could a malicious website change the user's data using CSRF? Should I implement CSRF tokens or can I prevent malicious websites from changing the data without it?
If authentication is based on something that the browser sends automatically with requests (like cookies), then yes, you most likely need protection against CSRF.
You can try it yourself: set up a server on one origin (eg. localhost:3000), and an attacker page on another (eg. localhost:8080, it's the same as a different domain, controlled by an attacker). Now log in to your app on :3000, and on your attacker origin make a page that will post to :3000 something that changes data. You will see that while :8080 will not receive the response (because of the same origin policy), :3000 will indeed receive and process the request. It will also receive cookies set for :3000, regardless of where the user is making the request from.
For mitigation, you can implement the synchronizer token pattern (csrf tokens), double submit, or you can decide to rely on the SameSite property of cookies, which are not supported by old browsers, but are supported by fairly recent ones, so there is some risk, depending on who your users are.

CSRF Requesting the nonce makes malicious POST possible?

I am trying to wrap my head around csrf protection and there is something I have trouble understanding. Maybe someone can give me the insight I need :).
What I understand
Say we have no csrf protection. Someone logs in to a website A with his/her credentials. After valid login a session cookie is stored in the browser. The user POSTS some data through a form and the sever accepts it with no trouble. Since we have no csrf protection this opens the system up for a vulnerability.
The user visits another website B, a malicious website like a phishing attempt. This website is posting to website A in the background with some javascript xhr request for example. The browser has the cookie stored for website A and since the user was logged in already this is a valid session. Therefore website A will accept the post without any trouble.
To solve this csrf protection comes in. Upon loading the page with the form on website A from the server a nonce (one time code) is generated. This code must be submitted with the form so the server can check if this post came from the same session that requested the form. If the code is the same as the one that was just generated the form is accepted. If the code is missing or incorrect, the server says no.
Question
If malicious website B first makes a get request to the page that renders the form. It would be able to fetch the token to send along with the post request afterwards. Right? Am I missing something obvious?
Thanks!
I understand that you concern is that a malicious website can request your anti-CSRF token.
You would need to prevent cross-origin reads or embedding of pages or endpoints that returns the CSRF tokens. One of the important things to keep in mind is that CORS don't provide CSRF protection, as preflight CORS requests are not always executed by the browser, for example when using regular html forms.
Most modern browsers block cross origin requests by default. When you do need cross origin requests for your own domains, can you do that by setting the correct Cross Origin headers, like Access-Control-Allow-Origin: sub.domain.com.
To prevent embedding in an iframe you can implement the X-Frame-Options: to DENY, or SAMEORIGIN.
You can find more information on https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Is CSRF possible with PUT or DELETE methods?

Is CSRF possible with PUT or DELETE methods? Or does the use of PUT or DELETE prevent CSRF?
Great question!
In a perfect world, I can't think of a way to perform a CSRF attack.
You cannot make PUT or DELETE requests using HTML forms.
Images, Script tags, CSS Links etc all send GET requests to the server.
XmlHttpRequest and browser plugins such as Flash/Silverlight/Applets will block cross-domain requests.
So, in general, it shouldn't be possible to make a CSRF attack to a resource that supports PUT/DELETE verbs.
That said, the world isn't perfect. There may be several ways in which such an attack can be made possible :
Web Frameworks such as Rails have support for "pseudo method". If you put a hidden field called _method, set its value to PUT or DELETE, and then submit a GET or POST request, it will override the HTTP Verb. This is a way to support PUT or DELETE from browser forms. If you are using such a framework, you will have to protect yourself from CSRF using standard techniques
You may accidentally setup a lax response headers for CORS on your server. This would allow arbitrary websites to make PUT and DELETE requests.
At some point, HTML5 had planned to include support for PUT and DELETE in HTML Forms. But later, they removed that support. There is no guarantee that it won't be added later. Some browsers may actually have support for these verbs, and that can work against you.
There may just be a bug in some browser plugin that could allow the attacker to make PUT/DELETE requests.
In short, I would recommend protecting your resources even if they only support PUT and DELETE methods.
Yes, CSRF is possible with the PUT and DELETE methods, but only with CORS enabled with an unrestrictive policy.
I disagree with Sripathi Krishnan's answer:
XmlHttpRequest and browser plugins such as Flash/Silverlight/Applets
will block cross-domain requests
Nothing stops the browser from making a cross-domain request. The Same Origin Policy does not prevent a request from being made - all it does is prevent the request from being read by the browser.
If the server is not opting into CORS, this will cause a preflight request to be made. This is the mechanism that will prevent a PUT or DELETE from being used, because it is not a simple request (the method needs to be HEAD, GET or POST). Assuming a properly locked down CORS policy of course (or none at all which is secure by default).
No. Relying on an HTTP verb is not a way to prevent a CSRF attack. It's all in how your site is created. You can use PUTs as POSTs and DELETEs as GETs - it doesn't really matter.
To prevent CSRF, take some of the steps outlined here:
Web sites have various CSRF countermeasures available:
Requiring a secret, user-specific token in all form submissions and side-effect URLs prevents CSRF; the attacker's site cannot put the
right token in its submissions1
Requiring the client to provide authentication data in the same HTTP Request used to perform any operation with security
implications (money transfer, etc.)
Limiting the lifetime of session cookies Checking the HTTP Referer header or(and)
Checking the HTTP Origin header[16]
Ensuring that there is no clientaccesspolicy.xml file granting unintended access to Silverlight controls[17]
Ensuring that there is no crossdomain.xml file granting unintended access to Flash movies[18]
Verifying that the request's header contains a X-Requested-With. Used by Ruby on Rails (before v2.0) and Django (before v1.2.5).
This protection has been proven unsecure[19] under a combination of
browser plugins and redirects which can allow an attacker to
provide custom HTTP headers on a request to any website, hence
allow a forged request.
In theory it should not be possible as there is no way to initiate a cross-domain PUT or DELETE request (except for CORS, but that needs a preflight request and thus the target site's cooperation). In practice I would not rely on that - many systems have been bitten by e.g. assuming that a CSRF file upload attack was not possible (it should not be, but certain browser bugs made it possible).
CSRF is indeed possible with PUT and DELETE depending on the configuration of your server.
The easiest way to think about CSRF is to think of having two tabs open in your browser, one open to your application with your user authenticated, and the other tab open to a malicious website.
If the malicious website makes a javascript request to your application, the browser will send the standard cookies with the request, thus allowing the malicious website to 'forge' the request using the already authenticated session. That website can do any type of request that it wants to, including GET, PUT, POST, DELETE, etc.
The standard way to defend against CSFR is to send something along with the request that the malicious website cannot know. This can be as simple as the contents of one of the cookies. While the request from the malicious site will have the cookies sent with it, it cannot actually access the cookies because it is being served by a different domain and browser security prevents it from accessing the cookies for another domain.
Call the cookie content a 'token'. You can send the token along with requests, and on the server, make sure the 'token' has been correctly provided before proceeding with the request.
The next question is how do you send that value with all the different requests, with DELETE specifically difficult since it is not designed to have any kind of payload. In my opinion, the cleanest way is to specify a request header with the token. Something like this x-security-token = token. That way, you can look at the headers of incoming requests, and reject any that are missing the token.
In the past, standard ajax security restricted what could be done via ajax on the malicious server, however, now-a-days, the vulnerability depends on how you have your server set up with regards to accees-control configurations. Some people open up their server to make it easier to make cross domain calls or for users to make their own RESTful clients or the like, but that also makes it easier for a malicious site to take advantage unless CSRF prevention methods like the ones above are put in place.

How to fix CSRF in the HTTP protocol spec?

What changes to the HTTP protocol spec, and to browser behaviour, would be required to prevent dangerous cases of cross-site request forgery?
I am not looking for suggestions as to how to patch my own web app. There are millions of vulnerable web apps and forms. It would be easier to change HTTP and/or the browsers.
If you agree to my premise, please tell me what changes to the HTTP and/or browser behaviour are needed. This is not a competition to find the best single answer, I want to collect all the good answers.
Please also read and comment on the points in my 'answer' below.
Roy Fielding, author of the HTTP specification, disagrees with your opinion, that CSRF is a flaw in HTTP and would need to be fixed there. As he wrote in a reply in a thread named The HTTP Origin Header:
CSRF is not a security issue for the Web. A well-designed Web
service should be capable of receiving requests directed by any host,
by design, with appropriate authentication where needed. If browsers
create a security issue because they allow scripts to automatically
direct requests with stored security credentials onto third-party
sites, without any user intervention/configuration, then the obvious
fix is within the browser.
And in fact, CSRF attacks were possible right from the beginning using plain HTML. The introduction of nowadays technologies like JavaScript and CSS did only introduce further attack vectors and techniques that made request forging easier and more efficient.
But it didn’t change the fact that a legitimate and authentic request from a client is not necessarily based on the user’s intention. Because browsers do send requests automatically all the time (e. g. images, style sheets, etc.) and send any authentication credentials along.
Again, CSRF attacks happen inside the browser, so the only possible fix would need to be to fix it there, inside the browser.
But as that is not entirely possible (see above), it’s the application’s duty to implement a scheme that allows to distinguish between authentic and forged requests. The always propagated CSRF token is such a technique. And it works well when implemented properly and protected against other attacks (many of them, again, only possible due to the introduction of modern technologies).
I agree with the other two; this could be done on the browser-side, but would make impossible to perform authorized cross-site requests.
Anyways, a CSRF protection layer could be added quite easily on the application side (and, maybe, even on the webserver-side, in order to avoid making changes to pre-existing applications) using something like this:
A cookie is set to a random value, known only by server (and, of course, the client receiving it, but not a 3rd party server)
Each POST form must contain a hidden field whose value must be the same of the cookie. If not, form submission must be prevented and a 403 page returned to the user.
Enforce the Same Origin Policy for form submission locations. Only allow a form to be submitted back to the place it came from.
This, of course, would break all sorts of other things.
If you look at the CSRF prevention cheat sheet you can see that there are ways of preventing CSRF by relying upon the HTTP protocol. A good example is checking the HTTP referer which is commonly used on embedded devices because it doesn't require additional memory.
However, this is weak form of protection. A vulnerability like HTTP response splitting on the client side could be used to influence the referer value, and this has happened.
cookies should be declared 'local' (default) or 'remote'
the browser must not send 'local' cookies with a cross-site request
the browser must never send http-auth headers with a cross-site request
the browser must not send a cross-site POST or GET ?query without permission
the browser must not send LAN address requests from a remote page without permission
the browser must report and control attacks, where many cross-site requests are made
the browser should send 'Origin: (local|remote)', even if 'Referer' is disabled
other common web security issues such as XSHM should be addressed in the HTTP spec
a new HTTP protocol version 1.2 is needed, to show that a browser is conforming
browsers should update automatically to meet new security requirements, or warn the user
It can already be done:
Referer header
This is a weaker form of protection. Some users may disable referer for privacy purposes, meaning that they won't be able to submit such forms on your site. Also this can be tricky to implement in code. Some systems allow a URL such as http://example.com?q=example.org to pass the referrer check for example.org. Finally, any open redirect vulnerabilities on your site may allow an attacker to send their CSRF attack through the open redirect in order to get the correct referer header.
Origin header
This is a new header. Unfortunately you will get inconsistencies between browsers that support it and do not support it. See this answer.
Other headers
For AJAX requests only, adding a header that is not allowed cross domain such as X-Requested-With can be used as a CSRF prevention method. Old browsers will not send XHR cross domain and new browsers will send a CORS preflight instead and then refuse to make the main request if it is explicitly not allowed by the target domain. The server-side code will need to ensure that the header is still present when the request is received. As HTML forms cannot have custom headers added, this method is incompatible with them. However, this also means that it protects against attackers using an HTML form in their CSRF attack.
Browsers
Browsers such as Chrome allow third party cookies to be blocked. Although the explanation says that it'll stop cookies from being set by a third party domain, it also prevent any existing cookies from being sent for the request. This will block "background" CSRF attacks. However, those that open full page or in a popup will succeed, but will be more visible to the user.

CSRF: Can I use a cookie?

Is it ok to put the CSRF token in a cookie? (and in every form, as a hidden input, so I can check if they match, of course) I heard someone say that doing so, beats the whole purpose of the token, though I don't understand why. It seems secure to me.
And if it is secure, is it any less secure than puting the token in the URL's ?
Is there any other method?
Where can I read more on the subject?
UPDATE: So far no one can tell me how is the cookie method insecure, if it still has to match the token from the form, which the attacker shouldn't be able to get, unless he uses another hack like XSS, which is a different matter, and still doesn't make a difference between using cookie and url token.
UPDATE 2: Okay, seems like some famous frameworks use this method, so it should be fine. Thanks
Using cookies works, and is a common practice (e. g. Django uses it). The attacker cannot read or change the value of the cookie due to the same-origin policy, and thus cannot guess the right GET/POST parameter.
Check out the Encrypted Token Pattern, which allows stateless CSRF protection without the need to store tokens on the server.
If you decide to put the CSRF-token in a cookie then remember to mark that cookie as HttpOnly. If your site has a cross-site scripting vulnerability the hacker won't be able to read the CSRF-token. You can check the cookies that can be read by JavaScript using the command console.log(document.cookie) in any modern browser console. If you have session cookies or other sensitive cookies these should also be marked as HttpOnly.
Further reading:
https://www.owasp.org/index.php/HttpOnly
"CSRF works because many sites use GET requests to execute commands.", so, many sites don't use the GET method as expected, because these request must be idempotent: see the rfc2616.
"The CSRF parameter is already there in the cookie and it gets sent along with the session.", so how?
The cookie is only used has a token storage, as the DOM when we set the token in a hidden input field. A piece of javascript must get the token value from this cookie, and set it as a parameter in the URL, the request body or in the request header. It will be check on the server with the value stored in the session. That's the Django way to handle the CSRF token.
Javascript can't access the cookie from another domain, due to the cross domain browser protection, so I don't know how a malicious user can force someone to send the correct token along a forged request. With an XSS, yes, but XSS defeat the common CSRF countermeasures.
I prefer giving this clarification, because I think it's an important question and not so easy to handle.
GET request must be used to get a resource and/or display its data, it must not be used to change its state (deletion, property incrementation or any changes).
The CSRF validation must be done server-side, it seems to be obvious, but I put it as a reminder. This method can't be a vector of attack if you observe this recommandations.
Using a cookie defeats the purpose of CSRF. Here's why:
CSRF works because many sites use GET requests to execute commands. So say Bob has some kind of administrative web account and he's logged into it. Some request could be made like:
http://somesite.com/admin/whatever.php?request=delete_record&id=4
So now Bob gets linked to an attack site (someone is trying to mess with his data). The attacker then loads the above URL in an image, probably with another ID and deletes some other record. The browser loads it because Bob is already logged into his admin site so he has a valid session.
CSRF seeks to eliminate this by adding a secure parameter to the transaction. That parameter should rotate on every request and then be resent by the browser. Making the URL look something like this:
http://somesite.com/admin/whatever.php?request=delete_record&id=4&csrf=<some long checksum>
The idea is that now the attacker has to guess "some long checksum" to create an attack. And if that checksum rotates on every request well it should be virtually impossible.
BUT if you store that checksum in a cookie you're back at square 1. The attacker no longer has to guess it. He just crafts the original URL. The CSRF parameter is already there in the cookie and it gets sent along with the session. It doesn't stop the insecure behavior from happening.

Resources