why does linking two boxes not produce symmetrical results? - j

Just learning J. I'm confused by the output:
Since we are linking two elements, each of which is already boxed, I expected both elements to look like the first -- that is, a list of boxed boxes.
Why is only the first item a boxed box, while the second item is just a box?

It is intentional and is done so that
2;3;4
┌─┬─┬─┐
│2│3│4│
└─┴─┴─┘
instead of
┌─┬─────┐
│1│┌─┬─┐│
│ ││2│3││
│ │└─┴─┘│
└─┴─────┘
Really just convenience to make it easier to create lists of boxes. Good observation though.
A much fuller explanation can be found in Henry Rich's 'J for C programmers' http://www.jsoftware.com/help/jforc/more_verbs_for_boxes.htm#_Toc191734395

Related

Rewriting trees

I have a data structure that represents a type signature, this data structure is a tree exemplified in the first picture as the red one. I would like to get the black one and so far I've only got the orange one (second picture), which is the type tree but associated to the left.
Here's the orange tree I've got so far (follow the orange arrows)
I had solved this problem by pretty printing the tree and then parsing it with a parser combinator, but this inefficiency is not desired. I think I can have another algorithm to convert from the orange tree to the black one, but it would be better if instead of composing two algorithms, I could write only one.
I will tag this as Haskell as I am writing my solution on it. I could provide code to get a data structure like the red tree but I think it would only complicate the attempt at the solution..
I would like to know if there is a name for this algorithm and/or what the name of the operator position in the red tree is. Is it prefix?
Thanks.
Have a look into recursion schemes. There's a related question here that includes loads of links:
Recursion schemes for dummies?
All of the links on that question are excellent, but I'd particularly look at Tim Williams' slides (link in my answer to that question) for concrete implementations of the various different recursion patterns (most of which are demo'd on tree structures).

How Do Ranks Work?

The best way for me to understand J is emulating the interpreter. Since the language is compact and has little rules, it's been easy... with the exception of how ranks affect function evaluation.
I want to be able to see an expression and know what's J doing to get the result, step by step.
Is there a doc, or someone could give me an algorithm so I can calculate myself how a f " n m b is evaluated?
Thanks in advance.
For learning about Rank the most accessible text is probably chapter 6 of J for C Programmers. The section of Eric Iverson's Primer that begins with Atom and goes through Checkpoint E covers the topic more concisely. Chapter 7 of Learning J is another place Rank is covered. All are valuable.
The most in-depth examination of Rank is Roger Hui's essay Rank and Uniformity. Hui's paper will make better reading after you've studied the other texts on this topic. Should it come down to wanting the nitty-gritty of implementation, you could dive into the interpreter source code. Personally, I'd not do that last one. Were I wanting to look at implementation algorithms I'd build a little model, and check it against the results of a J interpreter to make sure that my understanding of Rank matches.
Rank, in my view, is the most important concept in J. It is quite abstract in that it applies across all the shapes that nouns can take. The associated concepts are important to learn. These include shape, frame, cell, and agreement. These are explained individually in the Primer, but they're explained in some manner every time the topic is dealt with in depth.
The better your understanding of the Rank conjunction, and the broader world of noun Rank and verb Rank in which it applies, the more useful you'll find the three sections of the Vocabulary that deal with this conjunction. (Those sections are m"n , u"n , and m"v u"v .)
If you do come to write any algorithms that help you examine things in a step-by-step fashion, other J programmers will enjoy seeing them, I'm sure. I don't know of anything along those lines other than the actual interpreter source code.

A reverse inference engine (find a random X for which foo(X) is true)

I am aware that languages like Prolog allow you to write things like the following:
mortal(X) :- man(X). % All men are mortal
man(socrates). % Socrates is a man
?- mortal(socrates). % Is Socrates mortal?
yes
What I want is something like this, but backwards. Suppose I have this:
mortal(X) :- man(X).
man(socrates).
man(plato).
man(aristotle).
I then ask it to give me a random X for which mortal(X) is true (thus it should give me one of 'socrates', 'plato', or 'aristotle' according to some random seed).
My questions are:
Does this sort of reverse inference have a name?
Are there any languages or libraries that support it?
EDIT
As somebody below pointed out, you can simply ask mortal(X) and it will return all X, from which you can simply pick a random one from the list. What if, however, that list would be very large, perhaps in the billions? Obviously in that case it wouldn't do to generate every possible result before picking one.
To see how this would be a practical problem, imagine a simple grammar that generated a random sentence of the form "adjective1 noun1 adverb transitive_verb adjective2 noun2". If the lists of adjectives, nouns, verbs, etc. are very large, you can see how the combinatorial explosion is a problem. If each list had 1000 words, you'd have 1000^6 possible sentences.
Instead of the deep-first search of Prolog, a randomized deep-first search strategy could be easyly implemented. All that is required is to randomize the program flow at choice points so that every time a disjunction is reached a random pole on the search tree (= prolog program) is selected instead of the first.
Though, note that this approach does not guarantees that all the solutions will be equally probable. To guarantee that, it is required to known in advance how many solutions will be generated by every pole to weight the randomization accordingly.
I've never used Prolog or anything similar, but judging by what Wikipedia says on the subject, asking
?- mortal(X).
should list everything for which mortal is true. After that, just pick one of the results.
So to answer your questions,
I'd go with "a query with a variable in it"
From what I can tell, Prolog itself should support it quite fine.
I dont think that you can calculate the nth solution directly but you can calculate the n first solutions (n randomly picked) and pick the last. Of course this would be problematic if n=10^(big_number)...
You could also do something like
mortal(ID,X) :- man(ID,X).
man(X):- random(1,4,ID), man(ID,X).
man(1,socrates).
man(2,plato).
man(3,aristotle).
but the problem is that if not every man was mortal, for example if only 1 out of 1000000 was mortal you would have to search a lot. It would be like searching for solutions for an equation by trying random numbers till you find one.
You could develop some sort of heuristic to find a solution close to the number but that may affect (negatively) the randomness.
I suspect that there is no way to do it more efficiently: you either have to calculate the set of solutions and pick one or pick one member of the superset of all solutions till you find one solution. But don't take my word for it xd

Best strategies for reading J code

I've been using J for a few months now, and I find that reading unfamiliar code (e.g. that I didn't write myself) is one of the most challenging aspects of the language, particularly when it's in tacit. After a while, I came up with this strategy:
1) Copy the code segment into a word document
2) Take each operator from (1) and place it on a separate line, so that it reads vertically
3) Replace each operator with its verbal description in the Vocabulary page
4) Do a rough translation from J syntax into English grammar
5) Use the translation to identify conceptually related components and separate them with line breaks
6) Write a description of what each component from (5) is supposed to do, in plain English prose
7) Write a description of what the whole program is supposed to do, based on (6)
8) Write an explanation of why the code from (1) can be said to represent the design concept from (7).
Although I learn a lot from this process, I find it to be rather arduous and time-consuming -- especially if someone designed their program using a concept I never encountered before. So I wonder: do other people in the J community have favorite ways to figure out obscure code? If so, what are the advantages and disadvantages of these methods?
EDIT:
An example of the sort of code I would need to break down is the following:
binconv =: +/# ((|.#(2^i.###])) * ]) # ((3&#.)^:_1)
I wrote this one myself, so I happen to know that it takes a numerical input, reinterprets it as a ternary array and interprets the result as the representation of a number in base-2 with at most one duplication. (e.g., binconv 5 = (3^1)+2*(3^0) -> 1 2 -> (2^1)+2*(2^0) = 4.) But if I had stumbled upon it without any prior history or documentation, figuring out that this is what it does would be a nontrivial exercise.
Just wanted to add to Jordan's Answer : if you don't have box display turned on, you can format things this way explicitly with 5!:2
f =. <.#-:##{/:~
5!:2 < 'f'
┌───────────────┬─┬──────┐
│┌─────────┬─┬─┐│{│┌──┬─┐│
││┌──┬─┬──┐│#│#││ ││/:│~││
│││<.│#│-:││ │ ││ │└──┴─┘│
││└──┴─┴──┘│ │ ││ │ │
│└─────────┴─┴─┘│ │ │
└───────────────┴─┴──────┘
There's also a tree display:
5!:4 <'f'
┌─ <.
┌─ # ─┴─ -:
┌─ # ─┴─ #
──┼─ {
└─ ~ ─── /:
See the vocabulary page for 5!: Representation and also 9!: Global Parameters for changing the default.
Also, for what it's worth, my own approach to reading J has been to retype the expression by hand, building it up from right to left, and looking up the pieces as I go, and using identity functions to form temporary trains when I need to.
So for example:
/:~ i.5
0 1 2 3 4
NB. That didn't tell me anything
/:~ 'hello'
ehllo
NB. Okay, so it sorts. Let's try it as a train:
[ { /:~ 'hello'
┌─────┐
│ehllo│
└─────┘
NB. Whoops. I meant a train:
([ { /:~) 'hello'
|domain error
| ([{/:~)'hello'
NB. Not helpful, but the dictionary says
NB. "{" ("From") wants a number on the left.
(0: { /:~) 'hello'
e
(1: { /:~) 'hello'
h
NB. Okay, it's selecting an item from the sorted list.
NB. So f is taking the ( <. # -: # # )th item, whatever that means...
<. -: # 'hello'
2
NB. ??!?....No idea. Let's look up the words in the dictionary.
NB. Okay, so it's the floor (<.) of half (-:) the length (#)
NB. So the whole phrase selects an item halfway through the list.
NB. Let's test to make sure.
f 'radar' NB. should return 'd'
d
NB. Yay!
addendum:
NB. just to be clear:
f 'drara' NB. should also return 'd' because it sorts first
d
Try breaking the verb up into its components first, and then see what they do. And rather than always referring to the vocab, you could simply try out a component on data to see what it does, and see if you can figure it out. To see the structure of the verb, it helps to know what parts of speech you're looking at, and how to identify basic constructions like forks (and of course, in larger tacit constructions, separate by parentheses). Simply typing the verb into the ijx window and pressing enter will break down the structure too, and probably help.
Consider the following simple example: <.#-:##{/:~
I know that <. -: # { and /: are all verbs, ~ is an adverb, and # is a conjunction (see the parts of speech link in the vocab). Therefore I can see that this is a fork structure with left verb <.#-:## , right verb /:~ , and dyad { . This takes some practice to see, but there is an easier way, let J show you the structure by typing it into the ijx window and pressing enter:
<.#-:##{/:~
+---------------+-+------+
|+---------+-+-+|{|+--+-+|
||+--+-+--+|#|#|| ||/:|~||
|||<.|#|-:|| | || |+--+-+|
||+--+-+--+| | || | |
|+---------+-+-+| | |
+---------------+-+------+
Here you can see the structure of the verb (or, you will be able to after you get used to looking at these). Then, if you can't identify the pieces, play with them to see what they do.
10?20
15 10 18 7 17 12 19 16 4 2
/:~ 10?20
1 4 6 7 8 10 11 15 17 19
<.#-:## 10?20
5
You can break them down further and experiment as needed to figure them out (this little example is a median verb).
J packs a lot of code into a few characters and big tacit verbs can look very intimidating, even to experienced users. Experimenting will be quicker than your documenting method, and you can really learn a lot about J by trying to break down large complex verbs. I think I'd recommend focusing on trying to see the grammatical structure and then figure out the pieces, building it up step by step (since that's how you'll eventually be writing tacit verbs).
(I'm putting this in the answer section instead of editing the question because the question looks long enough as it is.)
I just found an excellent paper on the jsoftware website that works well in combination with Jordan's answer and the method I described in the question. The author makes some pertinent observations:
1) A verb modified by an adverb is a verb.
2) A train of more than three consecutive verbs is a series of forks, which may have a single verb or a hook at the far left-hand side depending on how many verbs there are.
This speeds up the process of translating a tacit expression into English, since it lets you group verbs and adverbs into conceptual units and then use the nested fork structure to quickly determine whether an instance of an operator is monadic or dyadic. Here's an example of a translation I did using the refined method:
d28=: [:+/\{.#],>:#[#(}.-}:)#]%>:#[
[: +/\
{.#] ,
>:#[ #
(}.-}:)#] %
>:#[
cap (plus infix prefix)
(head atop right argument) ravel
(increment atop left argument) tally
(behead minus curtail) atop right
argument
divided by
increment atop left argument
the partial sums of the sequence
defined by
the first item of the right argument,
raveled together with
(one plus the left argument) copies
of
(all but the first element) minus
(all but the last element)
of the right argument, divided by
(one plus the left argument).
the partial sums of the sequence
defined by
starting with the same initial point,
and appending consecutive copies of
points derived from the right argument by
subtracting each predecessor from its
successor
and dividing the result by the number
of copies to be made
Interpolating x-many values between
the items of y
I just want to talk about how I read:
<.#-:##{/:~
First off, I knew that if it was a function, from the command line, it had to be entered (for testing) as
(<.#-:##{/:~)
Now I looked at the stuff in the parenthesis. I saw a /:~, which returns a sorted list of its arguments, { which selects an item from a list, # which returns the number of items in a list, -: half, and <., floor...and I started to think that it might be median, - half of the number of items in the list rounded down, but how did # get its arguments? I looked at the # signs - and realized that there were three verbs there - so this is a fork. The list comes in at the right and is sorted, then at the left, the fork got the list to the # to get the number of arguments, and then we knew it took the floor of half of that. So now we have the execution sequence:
sort, and pass the output to the middle verb as the right argument.
Take the floor of half of the number of elements in the list, and that becomes the left argument of the middle verb.
Do the middle verb.
That is my approach. I agree that sometimes the phrases have too many odd things, and you need to look them up, but I am always figuring this stuff out at the J instant command line.
Personally, I think of J code in terms of what it does -- if I do not have any example arguments, I rapidly get lost. If I do have examples, it's usually easy for me to see what a sub-expression is doing.
And, when it gets hard, that means I need to look up a word in the dictionary, or possibly study its grammar.
Reading through the prescriptions here, I get the idea that this is not too different from how other people work with the language.
Maybe we should call this 'Test Driven Comprehension'?

Explanation of “tying the knot”

In reading Haskell-related stuff I sometimes come across the expression “tying the knot”, I think I understand what it does, but not how.
So, are there any good, basic, and simple to understand explanations of this concept?
Tying the knot is a solution to the problem of circular data structures. In imperative languages you construct a circular structure by first creating a non-circular structure, and then going back and fixing up the pointers to add the circularity.
Say you wanted a two-element circular list with the elements "0" and "1". It would seem impossible to construct because if you create the "1" node and then create the "0" node to point at it, you cannot then go back and fix up the "1" node to point back at the "0" node. So you have a chicken-and-egg situation where both nodes need to exist before either can be created.
Here is how you do it in Haskell. Consider the following value:
alternates = x where
x = 0 : y
y = 1 : x
In a non-lazy language this will be an infinite loop because of the unterminated recursion. But in Haskell lazy evaluation does the Right Thing: it generates a two-element circular list.
To see how it works in practice, think about what happens at run-time. The usual "thunk" implementation of lazy evaluation represents an unevaluated expression as a data structure containing a function pointer plus the arguments to be passed to the function. When this is evaluated the thunk is replaced by the actual value so that future references don't have to call the function again.
When you take the first element of the list 'x' is evaluated down to a value (0, &y), where the "&y" bit is a pointer to the value of 'y'. Since 'y' has not been evaluated this is currently a thunk. When you take the second element of the list the computer follows the link from x to this thunk and evaluates it. It evaluates to (1, &x), or in other words a pointer back to the original 'x' value. So you now have a circular list sitting in memory. The programmer doesn't need to fix up the back-pointers because the lazy evaluation mechanism does it for you.
It's not quite what you asked for, and it's not directly related to Haskell, but Bruce McAdam's paper That About Wraps It Up goes into this topic in substantial breadth and depth. Bruce's basic idea is to use an explicit knot-tying operator called WRAP instead of the implicit knot-tying that is done automatically in Haskell, OCaml, and some other languages. The paper has lots of entertaining examples, and if you are interested in knot-tying I think you will come away with a much better feel for the process.

Resources