Weird type inference in Haskell [duplicate] - haskell

I have the following function:
f :: (Int -> Int) -> Int
f = undefined
Now I want to call f with 5 (which is incorrect):
f 5
Obviously, this should not compile, because 5 is not a function from Int to Int.
So I would expect an error message like Couldn't match expected type Int -> Int with Int.
But instead I get:
No instance for (Num (Int -> Int)) arising from the literal `5'
In the first argument of `f', namely `5'
In the expression: f 5
In an equation for `it': it = f 5
Why did Num appear here?

5 is of any type in type class Num. These types include Int, Double, Integer, etc.
Functions are not in type class Num by default. Yet, a Num instance for functions might be added by the user, e.g. defining the sum of two functions in a pointwise fashion. In such case, the literal 5 can stand for the constant-five function.
Techncally, the literal stands for fromInteger 5, where the 5 is an Integer constant. The call f 5 is therefore actually f (fromInteger 5), which tries to convert five into Int -> Int. This requires an instance of Num (Int -> Int).
Hence, GHC does not state in its error that 5 can not be a function (since it could be, if the user declared it such, providing a suitable fromInteger). It just states, correctly, that no Num instance can be found for integer functions.

Related

Why does ghc warn that ^2 requires "defaulting the constraint to type 'Integer'?

If I compile the following source file with ghc -Wall:
main = putStr . show $ squareOfSum 5
squareOfSum :: Integral a => a -> a
squareOfSum n = (^2) $ sum [1..n]
I get:
powerTypes.hs:4:18: warning: [-Wtype-defaults]
• Defaulting the following constraints to type ‘Integer’
(Integral b0) arising from a use of ‘^’ at powerTypes.hs:4:18-19
(Num b0) arising from the literal ‘2’ at powerTypes.hs:4:19
• In the expression: (^ 2)
In the expression: (^ 2) $ sum [1 .. n]
In an equation for ‘squareOfSum’:
squareOfSum n = (^ 2) $ sum [1 .. n]
|
4 | squareOfSum n = (^2) $ sum [1..n]
| ^^
I understand that the type of (^) is:
Prelude> :t (^)
(^) :: (Integral b, Num a) => a -> b -> a
which means it works for any a^b provided a is a Num and b is an Integral. I also understand the type hierarchy to be:
Num --> Integral --> Int or Integer
where --> denotes "includes" and the first two are typeclasses while the last two are types.
Why does ghc not conclusively infer that 2 is an Int, instead of "defaulting the constraints to Integer". Why is ghc defaulting anything? Is replacing 2 with 2 :: Int a good way to resolve this warning?
In Haskell, numeric literals have a polymorphic type
2 :: Num a => a
This means that the expression 2 can be used to generate a value in any numeric type. For instance, all these expression type-check:
2 :: Int
2 :: Integer
2 :: Float
2 :: Double
2 :: MyCustomTypeForWhichIDefinedANumInstance
Technically, each time we use 2 we would have to write 2 :: T to choose the actual numeric type T we want. Fortunately, this is often not needed since type inference can frequently deduce T from the context. E.g.,
foo :: Int -> Int
foo x = x + 2
Here, x is an Int because of the type annotation, and + requires both operands to have the same type, hence Haskell infers 2 :: Int. Technically, this is because (+) has type
(+) :: Num a => a -> a -> a
Sometimes, however, type inference can not deduce T from the context. Consider this example involving a custom type class:
class C a where bar :: a -> String
instance C Int where bar x = "Int: " ++ show x
instance C Integer where bar x = "Integer: " ++ show x
test :: String
test = bar 2
What is the value of test? Well, if 2 is an Int, then we have test = "Int: 2". If it is an Integer, then we have test = "Integer: 2". If it's another numeric type T, we can not find an instance for C T.
This code is inherently ambiguous. In such a case, Haskell mandates that numeric types that can not be deduced are defaulted to Integer (the programmer can change this default to another type, but it's not relevant now). Hence we have test = "Integer: 2".
While this mechanism makes our code type check, it might cause an unintended result: for all we know, the programmer might have wanted 2 :: Int instead. Because of this, GHC chooses the default, but warns about it.
In your code, (^) can work with any Integral type for the exponent. But, in principle, x ^ (2::Int) and x ^ (2::Integer) could lead to different results. We know this is not the case since we know the semantics of (^), but for the compiler (^) is only a random function with that type, which could behave differently on Int and Integer. Consider, e.g.,
a ^ n = if n + 3000000000 < 0 then 0 else 1
When n = 2, if we use n :: Int the if guard could be true on a 32 bit system. This is not the case when using n :: Integer which never overflows.
The standard solution, in these cases, is to resolve the warning using something like x ^ (2 :: Int).

Syntax in Functions (Expected kind `* -> Constraint', but `Int' has kind `*') [duplicate]

This question already has answers here:
`String' is applied to too many type arguments
(2 answers)
Closed 2 years ago.
I'm starting to learn Haskell and I'm struggling with syntax in Functions. I'm trying to create a function that receives a Number 'e' and a Number 'n', returning a list with of 'n' times 'e'.
Example: repn 3 5 would return [3,3,3,3,3]:
repn :: Int a => a -> a -> [a]
repn e n
| n >= 1 = (take n (repeat e))
| otherwise = []
But I'm getting this error:
* Expected kind `* -> Constraint', but `Int' has kind `*'
* In the type signature: replica :: Int a => a -> a
As a rule of thumb, writing something of the form Foo a => ... only makes sense of Foo is a type class. Unlike in OO languages, a class and a type in Haskell are completely different things. Int is a type, therefore it cannot be used in this way; instead you should simply use
repn :: Int -> Int -> [Int]
...though actually there's no reason to restrict the list-element type at all, the signature could as well be
repn :: a -> Int -> [a]
Alternatively, you can use a type class: the class of “int-like types” is Integral. Then you can't use take directly, as that is restricted to Int for the counter argument; however you can convert any integral type to Int:
repn :: Integral n => a -> n -> [a]
repn e n = take (fromIntegral n) $ repeat e
-- Note no case distinction is needed, because `take` already yields
-- an empty list if `n<1`.
Your type definition is not correct. The double arrow is used to show required typeclasses (aka kind * -> Constraint), or a constraint on types. However, Int is itself a type (aka kind *).
You can't specify types in this way. In your implementation, n must be an Int, but e could be anything. Since you specify that it should be a number, though, you can constrain it with the Num typeclass. The correct version of your signature therefore is:
repn :: Num a => a -> Int -> [a]
If you want e to be constrained to an Int, then your signature should be
repn :: Int -> Int -> [Int]
If you don't need any constraints on e, your signature can be
repn :: a -> Int -> [a]
These are all valid type signatures for the function you have written. (Though in actual code, I would just point you to the builtin replicate function.)

Problems With Type Inference on (^)

So, I'm trying to write my own replacement for Prelude, and I have (^) implemented as such:
{-# LANGUAGE RebindableSyntax #-}
class Semigroup s where
infixl 7 *
(*) :: s -> s -> s
class (Semigroup m) => Monoid m where
one :: m
class (Ring a) => Numeric a where
fromIntegral :: (Integral i) => i -> a
fromFloating :: (Floating f) => f -> a
class (EuclideanDomain i, Numeric i, Enum i, Ord i) => Integral i where
toInteger :: i -> Integer
quot :: i -> i -> i
quot a b = let (q,r) = (quotRem a b) in q
rem :: i -> i -> i
rem a b = let (q,r) = (quotRem a b) in r
quotRem :: i -> i -> (i, i)
quotRem a b = let q = quot a b; r = rem a b in (q, r)
-- . . .
infixr 8 ^
(^) :: (Monoid m, Integral i) => m -> i -> m
(^) x i
| i == 0 = one
| True = let (d, m) = (divMod i 2)
rec = (x*x) ^ d in
if m == one then x*rec else rec
(Note that the Integral used here is one I defined, not the one in Prelude, although it is similar. Also, one is a polymorphic constant that's the identity under the monoidal operation.)
Numeric types are monoids, so I can try to do, say 2^3, but then the typechecker gives me:
*AlgebraicPrelude> 2^3
<interactive>:16:1: error:
* Could not deduce (Integral i0) arising from a use of `^'
from the context: Numeric m
bound by the inferred type of it :: Numeric m => m
at <interactive>:16:1-3
The type variable `i0' is ambiguous
These potential instances exist:
instance Integral Integer -- Defined at Numbers.hs:190:10
instance Integral Int -- Defined at Numbers.hs:207:10
* In the expression: 2 ^ 3
In an equation for `it': it = 2 ^ 3
<interactive>:16:3: error:
* Could not deduce (Numeric i0) arising from the literal `3'
from the context: Numeric m
bound by the inferred type of it :: Numeric m => m
at <interactive>:16:1-3
The type variable `i0' is ambiguous
These potential instances exist:
instance Numeric Integer -- Defined at Numbers.hs:294:10
instance Numeric Complex -- Defined at Numbers.hs:110:10
instance Numeric Rational -- Defined at Numbers.hs:306:10
...plus four others
(use -fprint-potential-instances to see them all)
* In the second argument of `(^)', namely `3'
In the expression: 2 ^ 3
In an equation for `it': it = 2 ^ 3
I get that this arises because Int and Integer are both Integral types, but then why is it that in normal Prelude I can do this just fine? :
Prelude> :t (2^)
(2^) :: (Num a, Integral b) => b -> a
Prelude> :t 3
3 :: Num p => p
Prelude> 2^3
8
Even though the signatures for partial application in mine look identical?
*AlgebraicPrelude> :t (2^)
(2^) :: (Numeric m, Integral i) => i -> m
*AlgebraicPrelude> :t 3
3 :: Numeric a => a
How would I make it so that 2^3 would in fact work, and thus give 8?
A Hindley-Milner type system doesn't really like having to default anything. In such a system, you want types to be either properly fixed (rigid, skolem) or properly polymorphic, but the concept of “this is, like, an integer... but if you prefer, I can also cast it to something else” as many other languages have doesn't really work out.
Consequently, Haskell sucks at defaulting. It doesn't have first-class support for that, only a pretty hacky ad-hoc, hard-coded mechanism which mainly deals with built-in number types, but fails at anything more involved.
You therefore should try to not rely on defaulting. My opinion is that the standard signature for ^ is unreasonable; a better signature would be
(^) :: Num a => a -> Int -> a
The Int is probably controversial – of course Integer would be safer in a sense; however, an exponent too big to fit in Int generally means the results will be totally off the scale anyway and couldn't feasibly be calculated by iterated multiplication; so this kind of expresses the intend pretty well. And it gives best performance for the extremely common situation where you just write x^2 or similar, which is something where you very definitely don't want to have to put an extra signature in the exponent.
In the rather fewer cases where you have a concrete e.g. Integer number and want to use it in the exponent, you can always shove in an explicit fromIntegral. That's not nice, but rather less of an inconvenience.
As a general rule, I try to avoid† any function-arguments that are more polymorphic than the results. Haskell's polymorphism works best “backwards”, i.e. the opposite way as in dynamic language: the caller requests what type the result should be, and the compiler figures out from this what the arguments should be. This works pretty much always, because as soon as the result is somehow used in the main program, the types in the whole computation have to be linked to a tree structure.
OTOH, inferring the type of the result is often problematic: arguments may be optional, may themselves be linked only to the result, or given as polymorphic constants like Haskell number literals. So, if i doesn't turn up in the result of ^, avoid letting in occur in the arguments either.
†“Avoid” doesn't mean I don't ever write them, I just don't do so unless there's a good reason.

How can a instance with Num type class coercion to Fractional implicitly?

I tested the numeric coercion by using GHCI:
>> let c = 1 :: Integer
>> 1 / 2
0.5
>> c / 2
<interactive>:15:1: error:
• No instance for (Fractional Integer) arising from a use of ‘/’
• In the expression: c / 2
In an equation for ‘it’: it = c / 2
>> :t (/)
(/) :: Fractional a => a -> a -> a -- (/) needs Fractional type
>> (fromInteger c) / 2
0.5
>>:t fromInteger
fromInteger :: Num a => Integer -> a -- Just convert the Integer to Num not to Fractional
I can use fromInteger function to convert a Integer type to Num (fromInteger has the type fromInteger :: Num a => Integer -> a), but I cannot understand that how can the type Num be converted to Fractional implicitly?
I know that if an instance has type Fractional it must have type Num (class Num a => Fractional a where), but does it necessary that if an instance has type Num it can be used as an instance with Fractional type?
#mnoronha Thanks for your detailed reply. There is only one question confuse me. I know the reason that type a cannot be used in function (/) is that type a is with type Integer which is not an instance of type class Fractional (the function (/) requires that the type of arguments must be instance of Fractional). What I don't understand is that even by calling fromInteger to convert the type integer to atype which be an instance of Num, it does not mean a type be an instance of Fractional (because Fractional type class is more constrained than Num type class, so a type may not implement some functions required by Fractional type class). If a type does not fully fit the condition Fractional type class requires, how can it be use in the function (/) which asks the arguments type be instance of Fractional. Sorry for not native speaker and really thanks for your patience!
I tested that if a type only fits the parent type class, it cannot be used in a function which requires more constrained type class.
{-# LANGUAGE OverloadedStrings #-}
module Main where
class ParentAPI a where
printPar :: int -> a -> String
class (ParentAPI a) => SubAPI a where
printSub :: a -> String
data ParentDT = ParentDT Int
instance ParentAPI ParentDT where
printPar i p = "par"
testF :: (SubAPI a) => a -> String
testF a = printSub a
main = do
let m = testF $ ParentDT 10000
return ()
====
test-typeclass.hs:19:11: error:
• No instance for (SubAPI ParentDT) arising from a use of ‘testF’
• In the expression: testF $ ParentDT 10000
In an equation for ‘m’: m = testF $ ParentDT 10000
In the expression:
do { let m = testF $ ParentDT 10000;
return () }
I have found a doc explaining the numeric overloading ambiguity very clearly and may help others with the same confusion.
https://www.haskell.org/tutorial/numbers.html
First, note that both Fractional and Num are not types, but type classes. You can read more about them in the documentation or elsewhere, but the basic idea is that they define behaviors for types. Num is the most inclusive numeric typeclass, defining behaviors functions like (+), negate, which are common to pretty much all "numeric types." Fractional is a more constrained type class that describes "fractional numbers, supporting real division."
If we look at the type class definition for Fractional, we see that it is actually defined as a subclass of Num. That is, for a type a to be an have an instance Fractional, it must first be a member of the typeclass Num:
class Num a => Fractional a where
Let's consider some type that is constrained by Fractional. We know it implements the basic behaviors common to all members of Num. However, we can't expect it to implement behaviors from other type classes unless multiple constraints are specified (ex. (Num a, Ord a) => a. Take, for example, the function div :: Integral a => a -> a -> a (integral division). If we try to apply the function with an argument that is constrained by the typeclass Fractional (ex. 1.2 :: Fractional t => t), we encounter an error. Type classes restrict the sort of values a function deals with, allowing us to write more specific and useful functions for types that share behaviors.
Now let's look at the more general typeclass, Num. If we have a type variable a that is only constrained by Num a => a, we know that it will implement the (few) basic behaviors included in the Num type class definition, but we'd need more context to know more. What does this mean practically? We know from our Fractional class declaration that functions defined in the Fractional type class are applied to Num types. However, these Num types are a subset of all possible Num types.
The importance of all this, ultimately, has to do with the ground types (where type class constraints are most commonly seen in functions). a represents a type, with the notation Num a => a telling us that a is a type that includes an instance of the type class Num. a could be any of the types that include the instance (ex. Int, Natural). Thus, if we give a value a general type Num a => a, we know it can implement functions for every type where there is a type class defined. For example:
ghci>> let a = 3 :: (Num a => a)
ghci>> a / 2
1.5
Whereas if we'd defined a as a specific type or in terms of a more constrained type class, we would have not been able to expect the same results:
ghci>> let a = 3 :: Integral a => a
ghci>> a / 2
-- Error: ambiguous type variable
or
ghci>> let a = 3 :: Integer
ghci>> a / 2
-- Error: No instance for (Fractional Integer) arising from a use of ‘/’
(Edit responding to followup question)
This is definitely not the most concrete explanation, so readers feel free to suggest something more rigorous.
Suppose we have a function a that is just a type class constrained version of the id function:
a :: Num a => a -> a
a = id
Let's look at type signatures for some applications of the function:
ghci>> :t (a 3)
(a 3) :: Num a => a
ghci>> :t (a 3.2)
(a 3.2) :: Fractional a => a
While our function had the general type signature, as a result of its application the the type of the application is more restricted.
Now, let's look at the function fromIntegral :: (Num b, Integral a) => a -> b. Here, the return type is the general Num b, and this will be true regardless of input. I think the best way to think of this difference is in terms of precision. fromIntegral takes a more constrained type and makes it less constrained, so we know we'll always expect the result will be constrained by the type class from the signature. However, if we give an input constraint, the actual input could be more restricted than the constraint and the resulting type would reflect that.
The reason why this works comes down to the way universal quantification works. To help explain this I am going to add in explicit forall to the type signatures (which you can do yourself if you enable -XExplicitForAll or any other forall related extension), but if you just removed them (forall a. ... becomes just ...), everything will work fine.
The thing to remember is that when a function involves a type constrained by a typeclass, then what that means is that you can input/output ANY type within that typeclass, so it's actually better to have a less constrained typeclass.
So:
fromInteger :: forall a. Num a => Integer -> a
fromInteger 5 :: forall a. Num a => a
Means that you have a value that is of EVERY Num type. So not only can you use it in a function taking it in a Fractional, you could use it in a function that only takes in MyWeirdTypeclass a => ... as long as there is one single type that implements both Num and MyWeirdTypeclass. Hence why you can get the following just fine:
fromInteger 5 / 2 :: forall a. Fractional a => a
Now of course once you decide to divide by 2, it now wants the output type to be Fractional, and thus 5 and 2 will be interpreted as some Fractional type, so we won't run into issues where we try to divide Int values, as trying to make the above have type Int will fail to type check.
This is really powerful and awesome, but very much unfamiliar, as generally other languages either don't support this, or only support it for input arguments (e.g print in most languages can take in any printable type).
Now you may be curious when the whole superclass / subclass stuff comes into play, so when you are defining a function that takes in something of type Num a => a, then because a user can pass in ANY Num type, you are correct that in this situation you cannot use functions defined on some subclass of Num, only things that work on ALL Num values, like *:
double :: forall a. Num a => a -> a
double n = n * 2 -- in here `n` really has type `exists a. Num a => a`
So the following does not type check, and it wouldn't type check in any language, because you don't know that the argument is a Fractional.
halve :: Num a => a -> a
halve n = n / 2 -- in here `n` really has type `exists a. Num a => a`
What we have up above with fromInteger 5 / 2 is more equivalent to the following, higher rank function, note that the forall within parenthesis is required, and you need to use -XRankNTypes:
halve :: forall b. Fractional b => (forall a. Num a => a) -> b
halve n = n / 2 -- in here `n` has type `forall a. Num a => a`
Since this time you are taking in EVERY Num type (just like the fromInteger 5 you were dealing with before), not just ANY Num type. Now the downside of this function (and one reason why no one wants it) is that you really do have to pass in something of EVERY Num type:
halve (2 :: Int) -- does not work
halve (3 :: Integer) -- does not work
halve (1 :: Double) -- does not work
halve (4 :: Num a => a) -- works!
halve (fromInteger 5) -- also works!
I hope that clears things up a little. All you need for the fromInteger 5 / 2 to work is that there exists ONE single type that is both a Num and a Fractional, or in other words just a Fractional, since Fractional implies Num. Type defaulting doesn't help much with clearing up this confusion, as what you may not realize is that GHC is just arbitrarily picking Double, it could have picked any Fractional.

Invalid use of function in Haskell with no type error

http://i.imgur.com/NGKpHbJ.png
thats the image of the output ^ .
the declarations are here:
let add1 x = x + 1
let multi2 x = x * 2
let wtf x = ((add1 multi2) x)
(wtf 3)
<interactive>:8:1:
No instance for (Num (a0 -> a0)) arising from a use of `it'
In a stmt of an interactive GHCi command: print it
?>
Can anyone explain to me why Haskell says that the type of the invalid expression is Num and why it wont print the number?
I can't understand what is going on on the type system.
add1 multi2 applies add1 to a function, but add1 expects a number. So you might expect this to be an error because functions aren't numbers, but the thing is that they could be. In Haskell a number is a value of a type that's an instance of the Num type class and you can add instances whenever you want.
That is, you can write instance Num (a -> a) where ... and then functions will be numbers. So now mult2 + 1 will do something that produces a new function of the same type as mult2 (what exactly that will be depends on how you defined + in the instance of course), so add1 mult2 produces a function of type Num a -> a -> a and applying that function to x gives you a value of the same type as x.
So what the type wtf :: (Num (a -> a), Num a) => a -> a is telling you is "Under the condition that you a is a numeric type and you define an instance for Num (a -> a)", wtf will take a number and produce a number of the same type. And when you then actually try to use the function, you get an error because you did not define an instance for Num (a -> a).
(Re-written somewhat in response to comment)
Your line of code:
((add1 multi2) x)
means: apply the add1 function to the argument multi2, then apply the resulting function to the argument x. Since adding 1 to a function doesn't make sense, this won't work, so we get a compile-time type error.
The error is explaining that the compiler cannot find a typeclass instance to make functions work like numbers. Numbers must be part of the Num typeclass so they can be added, multiplied etc.
No instance for (Num (a0 -> a0)
In other words, the type a0-> a0 (which is a function type) doesn't have a Num typeclass instance, so adding 1 to it fails. This is a compile-time error; the code is never executed, so GHCi cannot print any output from your function.
The type of your wtf function is:
wtf :: (Num (a -> a), Num a) => a -> a
which says:
Given that a is a numeric type
and a -> a (function) is a numeric type
then wtf will take a number and return a number
The second condition fails at compile time because there's no defined way to treat a function as a number.

Resources