Interpreting Haskell monad example - haskell

I have this Haskell code that triples input value.
triple :: Int -> Int
triple = do
n <- id
d <- (n+)
(d+)
How does this code work? With an example triple 10, how the argument 10 is mapped/assigned to id, n and d to get the return value of 30?
My understandig is as follows:
We can decompose triple function with two subfunctions tripleA and tripleB as follows:
triple :: Int -> Int
triple = tripleA >>= (\d -> tripleB d)
tripleA :: Int -> Int
tripleA = id >>= (\n -> (n+))
tripleB :: Int -> Int -> Int
tripleB d = (d+)
Now we can see that the function tripleA gets an input, assign it to id function to return the value itself, and map it to the function (\n -> (n+)) to return (10+) 10.
Likewise, tripleB also makes (20+) 20, so I expect the results as 40, but the correct answer is 30.
What is wrong with my interpretation?

We can rewrite equivalent triple2 function as follows:
triple2 = (id >>= (\n -> (n+))) >>= (\d -> (d+))
With f = \n -> (n+), we have triple2 = (id >> f) >> f.
From the definition of >>= in (https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.Base.html#line-645), we have
1. id >>= f
\r -> f (id r) r = \r -> f r r = \r -> (r+) r
2. (id >>= f) >>= f
x = id >>= f = \r -> (r+) r
x r = (r+) r
x >> f = \r -> f (x r) r = f ((r+) r) r = ((r+) r)+ r
so ((10+) 10)+ 10 makes 30

Related

How to pass not a function that returns a boolean in another function?

I want to negate a function in the if clause of another function like bellow:
isBig :: Integer -> Bool
isBig n = n > 9999
function :: Integer -> Integer
function n =
if not isBig n then ... else ...
It complies when it's just 'if isBig n then else' but I'm not sure why it doesn't work for 'not isBig' as I get this error:
*Couldn't match expected type Bool' with actual type Integer -> Bool'
Many thanks in advance.
You want not (isBig n). not isBig n tries to pass two arguments to not, both isBig and n. isBig is an Integer -> Bool but a Bool is expected, hence the error.
In general, function application in Haskell is left-associative, meaning that an expression like this:
f 2 3 5
Is parsed like this:
(((f 2) 3) 5)
Likewise, the arrows in function types are right-associative, so for example if we had this definition for f:
f :: Int -> Int -> Int -> Int
f x y z = x * y + z
That type signature is the same as:
f :: Int -> (Int -> (Int -> Int))
So it looks like this as you apply more arguments:
f :: Int -> (Int -> (Int -> Int))
(f 2) :: (Int -> (Int -> Int))
((f 2) 3) :: (Int -> Int)
(((f 2) 3) 5 :: Int
==
f :: Int -> Int -> Int -> Int
f 2 :: Int -> Int -> Int
f 2 3 :: Int -> Int
f 2 3 5 :: Int
When you’re applying a chain of functions to an argument, you end up with parentheses associating to the right:
f (g (h x))
In this case it’s common to use the $ operator, which is right-associative and has low precedence, just to reduce the nesting of brackets:
f $ g $ h x
And you can do so in your case: not $ isBig n
You can also use composition to factor out the chain of functions and apply it to different arguments elsewhere:
fgh = f . g . h
fgh x
==
(f . g . h) x
==
f (g (h x))
isNotBig = not . isBig
isNotBig n
==
(not . isBig) n
==
not (isBig n)

Understanding do notation for simple Reader monad: a <- (*2), b <- (+10), return (a+b)

instance Monad ((->) r) where
return x = \_ -> x
h >>= f = \w -> f (h w) w
import Control.Monad.Instances
addStuff :: Int -> Int
addStuff = do
a <- (*2)
b <- (+10)
return (a+b)
I'm trying to understand this monad by unwiding the do notation, because I think the do notation hides what happens.
If I understood correctly, this is what happens:
(*2) >>= (\a -> (+10) >>= (\b -> return (a+b)))
Now, if we take the rule for >>=, we must understand (*2) as h and (\a -> (+10) >>= (\b -> return (a+b))) as f. Applying h to w is easy, let's just say it is 2w (I don't know if 2w is valid in haskell but just for reasoning lets keep it this way. Now we have to apply f to h w or 2w. Well, f simply returns (+10) >>= (\b -> return (a+b)) for an specific a, which is 2w in our case, so f (hw) is (+10) >>= (\b -> return (2w+b)). We must first get what happens to (+10) >>= (\b -> return (2w + b)) before finally applying it to w.
Now we reidentify (+10) >>= (\b -> return (2w + b)) with our rule, so h is +10 and f is (\b -> return (2w + b)). Let's first do h w. We get w + 10. Now we need to apply f to h w. We get (return (2w + w + 10)).
So (return (2w + w + 10)) is what we need to apply to w in the first >>= that we were tyring to uwind. But I'm totally lost and I don't know what happened.
Am I thinking in the rigth way? This is so confusing. Is there a better way to think of it?
You're forgetting that operator >>= doesn't return just f (h w) w, but rather \w -> f (h w) w. That is, it returns a function, not a number.
By substituting it incorrectly you lost the outermost parameter w, so it's no wonder it remains free in your final expression.
To do this correctly, you have to substitute function bodies for their calls completely, without dropping stuff.
If you substitute the outermost >>=, you will get:
(*2) >>= (\a -> ...)
==
\w -> (\a -> ...) (w*2) w
Then, if you substitute the innermost >>=, you get:
\a -> (+10) >>= (\b -> return (a+b))
==
\a -> \w1 -> (\b -> return (a+b)) (w1 + 10) w1
Note that I use w1 instead of w. This is to avoid name collisions later on when I combine the substitutions, because these two ws come from two different lambda abstractions, so they're different variables.
Finally, substitute the return:
return (a+b)
==
\_ -> a+b
Now insert this last substitution into the previous one:
\a -> (+10) >>= (\b -> return (a+b))
==
\a -> \w1 -> (\b -> return (a+b)) (w1 + 10) w1
==
\a -> \w1 -> (\b -> \_ -> a+b) (w1 + 10) w1
And finally insert this into the very first substitution:
(*2) >>= (\a -> ...)
==
\w -> (\a -> ...) (w*2) w
==
\w -> (\a -> \w1 -> (\b -> \_ -> a+b) (w1 + 10) w1) (w*2) w
And now that all substitutions are compete, we can reduce. Start with applying the innermost lambda \b -> ...:
\w -> (\a -> \w1 -> (\_ -> a+w1+10) w1) (w*2) w
Now apply the new innermost lambda \_ -> ...:
\w -> (\a -> \w1 -> a+w1+10) (w*2) w
Now apply \a -> ...:
\w -> (\w1 -> w*2+w1+10) w
And finally apply the only remaining lambda \w1 -> ...:
\w -> w*2+w+10
And voila! The whole function reduces to \w -> (w*2) + (w+10), completely as expected.
First, we write out the implicit argument in your definition explicitly,
addStuff :: Int -> Int
addStuff = do
a <- (*2)
b <- (+10)
return (a+b)
=
addStuff :: Int -> Int
addStuff x = ( do
a <- (*2)
b <- (+10)
return (a+b) ) x
=
....
Then, with
return x = const x
(f =<< h) w = f (h w) w -- (f =<< h) = (h >>= f)
it should be easier to follow and substitute the definitions, line for line:
....
=
( (*2) >>= (\a -> -- (h >>= f) =
(+10) >>= (\b ->
const (a+b) ) ) ) x
=
( (\a -> -- = (f =<< h)
(+10) >>= (\b ->
const (a+b) ) ) =<< (*2) ) x -- (f =<< h) w =
=
(\a ->
(+10) >>= (\b ->
const (a+b) ) ) ( (*2) x) x -- = f (h w) w
=
( let a = (*2) x in -- parameter binding
(+10) >>= (\b ->
const (a+b) ) ) x
=
let a = (*2) x in -- float the let
((\b ->
const (a+b) ) =<< (+10) ) x -- swap the >>=
=
let a = (*2) x in
(\b -> -- (f =<< h) w =
const (a+b) ) ( (+10) x) x -- = f (h w) w
=
let a = (*2) x in
(let b = (+10) x in -- application
const (a+b) ) x
=
let a = (*2) x in -- do a <- (*2)
let b = (+10) x in -- b <- (+10)
const (a+b) x -- return (a+b)
The essence of reader monad is application to same argument shared between all calls.
Intuitively, each function call on the right-hand side of the <- is given an additional argument, which you can think of as the argument to addStuff itself.
Take
addStuff :: Int -> Int
addStuff = do
a <- (*2)
b <- (+10)
return (a+b)
and turn it into
addStuff :: Int -> Int
addStuff x = let a = (*2) x
b = (+10) x
in (a+b)
It looks a little less "strange" if you use the MonadReader instance for (->) r, which provides ask as a way to get direct access to the implicit value.
import Control.Monad.Reader
addStuff :: Int -> Int
addStuff = do
x <- ask -- ask is literally just id in this case
let a = x * 2
let b = x + 10
return (a + b)

Memoisation with auxiliary parameter in Haskell

I have a recursive function f that takes two parameters x and y. The function is uniquely determined by the first parameter; the second one merely makes things easier.
I now want to memoise that function w.r.t. it's first parameter while ignoring the second one. (I.e. f is evaluated at most one for every value of x)
What is the easiest way to do that? At the moment, I simply define an array containing all values recursively, but that is a somewhat ad-hoc solution. I would prefer some kind of memoisation combinator that I can just throw at my function.
EDIT: to clarify, the function f takes a pair of integers and a list. The first integer is some parameter value, the second one denotes the index of an element in some global list xs to consume.
To avoid indexing the list, I pass the partially consumed list to f as well, but obviously, the invariant is that if the first parameter is (m, n), the second one will always be drop n xs, so the result is uniquely determined by the first parameter.
Just using a memoisation combinator on the partially applied function will not work, since that will leave an unevaluated thunk \xs -> … lying around. I could probably wrap the two parameters in a datatype whose Eq instance ignores the second value (and similarly for other instances), but that seems like a very ad-hoc solution. Is there not an easier way?
EDIT2: The concrete function I want to memoise:
g :: [(Int, Int)] -> Int -> Int
g xs n = f 0 n
where f :: Int -> Int -> Int
f _ 0 = 0
f m n
| m == length xs = 0
| w > n = f (m + 1) n
| otherwise = maximum [f (m + 1) n, v + f (m + 1) (n - w)]
where (w, v) = xs !! m
To avoid the expensive indexing operation, I instead pass the partially-consumed list to f as well:
g' :: [(Int, Int)] -> Int -> Int
g' xs n = f xs 0 n
where f :: [(Int, Int)] -> Int -> Int -> Int
f [] _ _ = 0
f _ _ 0 = 0
f ((w,v) : xs) m n
| w > n = f xs (m + 1) n
| otherwise = maximum [f xs (m + 1) n, v + f xs (m + 1) (n - w)]
Memoisation of f w.r.t. the list parameter is, of course, unnecessary, since the list does not (morally) influence the result. I would therefore like the memoisation to simply ignore the list parameter.
Your function is unnecessarily complicated. You don't need the index m at all:
foo :: [(Int, Int)] -> Int -> Int
foo [] _ = 0
foo _ 0 = 0
foo ((w,v):xs) n
| w > n = foo xs n
| otherwise = foo xs n `max` foo xs (n - w) + v
Now if you want to memoize foo then both the arguments must be considered (as it should be).
We'll use the monadic memoization mixin method to memoize foo:
First, we create an uncurried version of foo (because we want to memoize both arguments):
foo' :: ([(Int, Int)], Int) -> Int
foo' ([], _) = 0
foo' (_, 0) = 0
foo' ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = foo' (xs, n) `max` foo' (xs, n - w) + v
Next, we monadify the function foo' (because we want to thread a memo table in the function):
foo' :: Monad m => ([(Int, Int)], Int) -> m Int
foo' ([], _) = return 0
foo' (_, 0) = return 0
foo' ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = do
a <- foo' (xs, n)
b <- foo' (xs, n - w)
return (a `max` b + v)
Then, we open the self-reference in foo' (because we want to call the memoized function):
type Endo a = a -> a
foo' :: Monad m => Endo (([(Int, Int)], Int) -> Int)
foo' _ ([], _) = return 0
foo' _ (_, 0) = return 0
foo' self ((w,v):xs, n)
| w > n = foo' (xs, n)
| otherwise = do
a <- self (xs, n)
b <- self (xs, n - w)
return (a `max` b + v)
We'll use the following memoization mixin to memoize our function foo':
type Dict a b m = (a -> m (Maybe b), a -> b -> m ())
memo :: Monad m => Dict a b m -> Endo (a -> m b)
memo (check, store) super a = do
b <- check a
case b of
Just b -> return b
Nothing -> do
b <- super a
store a b
return b
Our dictionary (memo table) will use the State monad and a Map data structure:
import Prelude hiding (lookup)
import Control.Monad.State
import Data.Map.Strict
mapDict :: Ord a => Dict a b (State (Map a b))
mapDict = (check, store) where
check a = gets (lookup a)
store a b = modify (insert a b)
Finally, we combine everything to create a memoized function memoFoo:
import Data.Function (fix)
type MapMemoized a b = a -> State (Map a b) b
memoFoo :: MapMemoized ([(Int, Int)], Int) Int
memoFoo = fix (memo mapDict . foo')
We can recover the original function foo as follows:
foo :: [(Int, Int)] -> Int -> Int
foo xs n = evalState (memoFoo (xs, n)) empty
Hope that helps.

What is the type of the variable in do-notation here in Haskell?

The codes below looks quite clear:
do
x <- Just 3
y <- Just "!"
Just (show x ++ y)
Here the type of x is Num and y is String. (<- here is used to take actual value out of the Monad)
However, this snippet looks not so clear to me:
import Control.Monad.Instances
addStuff :: Int -> Int
addStuff = do
a <- (* 2)
b <- (+ 10)
return (a + b)
What is the type of a and type of b here? It seems they act like a Num, but a <- (* 2) and b <- (+ 10) looks cryptic here...
Does anyone have ideas about this?
Well, you've stumbled upon a kind of weird monad.
The monad in question is the Monad ((->) r). Now, what does that mean? Well, it's the monad of functions of the form r -> *. I.e., of functions that take the same type of input.
You asked what the type of a and b are in this instance. Well, they are both Num a => a, but that doesn't really explain much.
Intuitively, we can understand the monad like this: A monadic value is a function that takes a value of type r as input. Whenever we bind in the monad, we take that value and pass it to the bound function.
I.e., in our addStuff example, if we call addStuff 5, then a is bound to (*2) 5 (which is 10), and b is bound to (+10) 5 (which is 15).
Let's see a simpler example from this monad to try to understand how it works precisely:
mutate = do a <- (*2)
return (a + 5)
If we desugar this to a bind, we get:
mutate = (*2) >>= (\a -> return (a + 5))
Now, this doesn't help much, so let's use the definition of bind for this monad:
mutate = \ r -> (\a -> return (a + 5)) ((*2) r) r
This reduces to
mutate = \ r -> return ((r*2) + 5) r
Which we using the definition that return is const, can reduce to
mutate = \ r -> (r*2) + 5
Which is a function, that multiplies a number by 2, and then adds 5.
That's one weird monad.
Given addStuff
addStuff :: Int -> Int
addStuff = do
a<-(*2)
b<-(+10)
return (a+b)
the definition desugars into
addStuff =
(* 2) >>= \a ->
(+ 10) >>= \b ->
return (a + b)
Hovering over the >>= in fpcomplete online editor shows
:: Monad m => forall a b.
(m a ) -> (a -> m b ) -> (m b )
:: (Int -> a ) -> (a -> Int -> b ) -> (Int -> b )
:: (Int -> Int) -> (Int -> Int -> Int) -> (Int -> Int)
That leads us to believe we use a Monad instance for functions. Indeed if we look at the source code, we see
instance Monad ((->) r) where
return = const
f >>= k = \ r -> k (f r) r
Using this newly obtained information we can evaluate the addStuff function ourselves.
Given the initial expression
(* 2) >>= ( \a -> (+10) >>= \b -> return (a + b) )
we substitute using the >>= definition, giving us (in the following {}, [], () just illustrate different depth of ())
\r1 -> {\a -> (+10) >>= \b -> return (a + b)} {(* 2) r1} r1
simplify the second-to-last term inside the outermost lambda
\r1 -> {\a -> (+10) >>= \b -> return (a + b)} {r1 * 2} r1
apply {r1 * 2} to {\a -> ...}
\r1 -> {(+10) >>= \b -> return ((r1 * 2) + b)} r1
substitute remaining >>= with its definition again
\r1 -> {\r2 -> [\b -> return (r1 * 2 + b)] [(+10) r2] r2} r1
simplify second-to-last term inside inner lambda
\r1 -> {\r2 -> [\b -> return (r1 * 2 + b)] [r2 + 10] r2} r1
apply [r2 + 10] to {\b -> ...}
\r1 -> {\r2 -> [return (r1 * 2 + (r2 + 10))] r2} r1
apply r1 to {\r2 -> ...}
\r1 -> {return (r1 * 2 + r1 + 10) r1}
substitute return with its definition
\r1 -> {const (r1 * 2 + r1 + 10) r1}
evaluate const x _ = x
\r1 -> {r1 * 2 + r1 + 10}
prettify
\x -> 3 * x + 10
finally we get
addStuff :: Int -> Int
addStuff = (+ 10) . (* 3)

Converting `do` Notation `addStuff` to `>>=`

Learn You a Haskell presents the addStuff function:
import Control.Monad.Instances
addStuff :: Int -> Int
addStuff = do
a <- (*2) -- binds (*2) to a
b <- (+10) -- binds (+10) to b
return (a+b) -- return has type sig: 'Monad m => a -> m a'
Are the types of a, b, and return (a+b) all Int -> Int? I think so, but I'm not sure how bind-ing plays a role.
I tried to implement it using >>=, but I'm not sure how to complete it (hence ...).
addStuff' :: Int -> Int
addStuff' = (*2) >>= (+10) >>= ...
Please give me a hint to complete it, as well as edit my understanding of the do notation version.
As I understand, the ... needs to include a type of Int -> Int. In the do version, I could use a and b, but I'm not sure how to add them with the >>= version.
When working with the reader monad (a.k.a. the function monad), you have the type a -> b, which can be rewritten as (->) a b. The actual monad instance here is
instance Monad ((->) r) where
return x = const x
f >>= g = \r -> g (f r) r
Notice that during >>=, the type is
(>>=) :: ((->) r a) -> (a -> ((->) r b)) -> ((->) r b)
Which can be rewritten as
(>>=) :: (r -> a) -> (a -> (r -> b)) -> (r -> b)
Or even
(>>=) :: (r -> a) -> (a -> r -> b) -> (r -> b)
So as you can see, what >>= does is take a single input, apply that to f, and then apply that result to g to produce a new function r -> b. So for your example, you could use:
addStuff' :: Int -> Int
addStuff' = (*2) >>= (+)
And so addStuff' 10 == 30, since it performs the computation (10 * 2) + (10). Note how 10 is fed both to (*2) and (+), and the result of (10*2) is fed to (+) as well. It might make things a little more clear to see it as
test :: Int -> (Int, Int, Int)
test = do
x <- (*2)
y <- (*3)
z <- (*5)
return (x, y, z)
And it's result would be
> test 1
(2, 3, 5)
> test 10
(20, 30, 50)
What this essentially is doing is taking the argument to test "before" it's been applied, feeding it to each of the functions on the right hand side of the <-s, and then combining that result in the return.
So how can you write these without do notation? You could do something like
test :: Int -> (Int, Int, Int)
test =
(\r -> r * 2) >>= (\x ->
(\r -> r * 3) >>= (\y ->
(\r -> r * 5) >>= (\z ->
return (x, y, z))))
Which, admittedly, is not very readable, even with formatting, but the gist is basically that r gets fed to each intermediate function, which produces a result, and a couple nested lambda expressions later you return all three of those results in a tuple.
With a bit of simplification, you could also make each of those nested lambdas into two arguments lambdas:
test =
(\r -> r * 2) >>=
(\x r -> r * 3) >>=
(\y r -> r * 5) >>=
(\z r -> const (x, y, z) r)
I've also replaced the last \z -> return (x, y, z) with its equivalent \z -> const (x, y, z) => \z r -> const (x, y, z) r, just so they all have the same form.
As a rough rule if you want to manually desugar do-notation, first erase the do at the top and flip the bind arrow (<-) on the left-hand-side to a (>>=) on the right-hand-side with the variable on the left as a lambda variable on the right. So:
addStuff :: Int -> Int
addStuff = do
a <- (*2)
... rest ...
Becomes:
addStuff :: Int -> Int
addStuff =
(*2) >>= (\a ->
... rest ...
)
This is recursive, so the next term in the do-notation then becomes nested in the lambda of the desugared term above it, all the way down to the last expression which is just the body of the nested lambda expression.
The desugaring is quite mechanical, it's defined by the following rewrites, where ; denotes a newline.
do { a <- f ; m } ≡ f >>= \a -> do { m }
do { f ; m } ≡ f >> do { m }
do { m } ≡ m
Both a and b are of type Int while return (a+b) has type Int -> Int which is the last term in the do-notation so it has to be identical to the toplevel signature. Using -XScopedTypeVariables we can manually annotate the subterms:
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Monad.Instances
addStuff :: Int -> Int
addStuff = do
(a :: Int) <- (*2)
(b :: Int) <- (+10)
(return (a+b)) :: Int -> Int
Thanks to bheklilr.
I wrote my own code.
addStuff :: Int -> Int
addStuff = (\r -> r * 2) >>= (\x ->
(\r -> r + 10) >>= (\y ->
return (x + y)))

Resources