One of the worker nodes in my HDInsight Hadoop (Linux) cluster is dead (stopped sending heartbeat). Is there any chance that HDInsight Will try to rectify it ? If not, what is the way to bring it back online?
Login to the node via ssh, if it is not the head ssh to it from the head node. Once on the node, restart the ambari-agent. The ambari-agent is what sends the heart beats.
Related
I'm running Hadoop and Spark on a four-node cluster in AWS EC2.
After doing a lot of web research, it seems the accepted way to start Spark on a cluster (once Hadoop is running) is to:
1) Log into the master node and run start-master.sh.
2) Log into each slave node and run start-slave.sh, passing it the DNS and port information for the master node.
My question is: If there are, let's say 20 nodes, this is pretty tedious and time consuming. Is there a way to start Spark from some localized location the way Hadoop is started? When you run Hadoop from the master node, it starts all the slave nodes remotely. I'm looking for a solution like that, or for a python script that can SSH into the nodes and start them.
You could use Apache Ambari to manage the whole cluster, which would SSH to all nodes for you
Otherwise, you could use a system like Ansible to configure and start all the services
Sounds like you're only using Spark Standalone, though, not YARN, because there is no start-slaves script for YARN
I read an answer from What conditions should cluster deploy mode be used instead of client?,
(In client mode) You could run spark-submit on your laptop, and the Driver Program would run on your laptop.
Also, the Spark Doc says,
In client mode, the driver is launched in the same process as the client that submits the application.
Does it mean that I can submit spark tasks from any machine, as long as it can be reachable from master and has Spark environment?
Or in other words, can driver process run outside of the Spark cluster?
Yes, the driver can run on your laptop. Keep in mind though:
The Spark driver will need the Hadoop configuration to be able to talk to YARN and HDFS. You could copy it from the cluster and point to it via HADOOP_CONF_DIR.
The Spark driver will listen on a lot of ports and expect the executors to be able to connect to it. It will advertise the hostname of your laptop. Make sure it can be resolved and all ports accessed from the cluster environment.
Yes, I'm running spark-submit jobs over the LAN using option --deploy-mode cluster. Currently running into this issue however: the server response (json object) isn't very descriptive.
I have cassandra cluster with 3 nodes based on linux. I can connect for example with cqlsh in bash script to first node and everything is ok, if this first node will be down my application have to catch it and connect to the second node etc... Is there ny possibility to connect to cluster and then cluster to be responsible to redirect me to the second node if the first one is down?
Thanks in Advance
All Cassandra drivers come with load balancing and maintain list of active nodes. No worry, switching to live node is transparent to users.
I am trying to run a PySpark job on a Mesosphere cluster but I cannot seem to get it to run. I understand that Mesos does not support cluster deploy mode for PySpark applications and that it needs to be run in client mode. I believe this is where the problem lies.
When I try submitting a PySpark job I am getting the output below.
... socket.hpp:107] Shutdown failed on fd=48: Transport endpoint is not connected [107]
I believe that a spark job running in client mode needs to connect to the nodes directly and this is being blocked?
What configuration would I need to change to be able to run a PySpark job in client mode?
When running PySpark in client mode (meaning the driver is running where you invoke Python) the driver becomes the Mesos Framework. When this happens, the host the framework is running on needs to be able to connect to all nodes in the cluster, and they need to be able to connect back, meaning no NAT.
If this is indeed the cause of your problems, there are two environment variables that might be useful. If you can get a VPN in place, you can set LIBPROCESS_IP and SPARK_LOCAL_IP both to the IP of the host machine that cluster nodes can use to connect back to the driver.
So I am still a bit new to hadoop and am currently in the process of setting up a small test cluster on Amazonaws. So my question relates to some tips on the structuring of the cluster so it is possible to work submit jobs from remote machines.
Currently I have 5 machines. 4 are basically the Hadoop cluster with the NameNodes, Yarn etc. One machine is used as a manager machine( Cloudera Manager). I am gonna describe my thinking process on the setup and if anyone can chime in the points I am not clear with, that would be great.
I was thinking what was the best setup for a small cluster. So I decided to expose only one manager machine and probably use that to submit all the jobs through it. The other machines will see each other etc, but not be accessible from the outside world. I am have conceptual idea on how to do this,but I am not sure how to properly go about doing this though, if anyone could point me in the right direction that would great.
Also another big point is, I want to be able to submit jobs to the cluster through exposed machine from a client machine (might be Windows). I am not so clear on this setup as well. Do I need to have Hadoop installed on the machine in order to use the normal hadoop commands, and to write/submit jobs say from Eclipse or something similar.
So to sum it up my questions are,
Is this an ok setup for a small test cluster
How can I go about using one exposed machine to submit/route jobs to the cluster, without having any of the Hadoop nodes on it.
How do I setup a client machine to submit jobs to a remote cluster, and an example on how to do it on Windows. Also if there are any reason not to use Windows as a client machine in this setup.
Thanks I would greatly appreciate any advice or help on this.
Since this is not answered I will attempt to answer it.
1. Rest api to submit an application:
Resource 1(Cluster Applications API(Submit Application)): https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html#Cluster_Applications_APISubmit_Application
Resource 2: https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_yarn-resource-management/content/ch_yarn_rest_apis.html
Resource 3: https://hadoop-forum.org/forum/general-hadoop-discussion/miscellaneous/2136-how-can-i-run-mapreduce-job-by-rest-api
Resource 4: Run a MapReduce job via rest api
2. Submitting hadoop job fromĀ client machine
Resource 1: https://pravinchavan.wordpress.com/2013/06/18/submitting-hadoop-job-from-client-machine/
3. Sending program to remote hadoop cluster
It is possible to send the program to a remote Hadoop cluster for running it. All you need to ensure is that you have set the resource manager address, fs.defaultFS, library files, and mapreduce.framework.name correctly before running the actual job.
Resource 1: (how to submit mapreduce job with yarn api in java)