generate binary one bit change between all members - haskell

ı have a question. ı want to generate binary list .but between members of the list will be only one bit change.
oneBitAll :: Integral a => a -> [[String]]
for n=2
Output:
["00","01","11","10"] ve ["00","10","11","01"]
n=3
oneBitAll 3
[["000","001","011","010","110","111","101","100"], ["000","001","011","111","101","100","110","010"], ["000","001","101","100","110","111","011","010"], ["000","001","101","111","011","010","110","100"], ["000","010","011","001","101","111","110","100"], .....]
only one bit change between members.
please help.
this gives only one
g 0 = [""]
g n = (map ('0':)) (g (n-1)) ++ (map ('1':)) (reverse (g (n-1)))
gray code is true for this.but ı want to find all combinations.
how can I generate all possible gray codes for given n number?
permute [] = [[]]
permute xs = concatMap (\x -> map (x:) $ permute $ delete x xs) xs
g 0 = [""]
g n = (map ('0':)) (g (n-1)) ++ (map ('1':)) (reverse (g (n-1)))
oneBitAll n = (map transpose . permute . transpose $ g n)
This code generate half of possibilities.What can ı add this code?this code generates;
[["000","001","011","010","110","111","101","100"],["000","010","011","001","101","111","110","100"],["000","001","101","100","110","111","011","010"],["000","010","110","100","101","111","011","001"],["000","100","101","001","011","111","110","010"],["000","100","110","010","011","111","101","001"]]
but must generate 12 members.

There is probably a smarter way to do this that exploits more of the structure of gray codes. This way is sort of quick and dirty, but it seems to work fairly well.
The basic idea is we'll generate all sequences of bitstrings, then filter out the ones that aren't gray codes. We'll be slightly more clever, though, in that we'll check prefixes of each sequence to make sure they could plausibly be extended to a gray code, and prune prefixes that can't be.
For our purposes, a gray code will have five properties:
Each pair of consecutive bitstrings differs in exactly one place.
The sequence is cyclic: the first and last bitstring also differ in exactly one place.
No two bitstrings in a sequence are equal.
A code with bitstring length n has 2^n elements.
To break the cyclic symmetry, every code will start with the all-zero bitstring.
Three of these properties can be expressed on code prefixes:
import Control.Monad
import Data.List
validCodePrefix xss = nearbyPairs && unique && endsWithZeros where
nearbyPairs = all (uncurry nearby) (zip xss (tail xss))
unique = all ((1==) . length) . group . sort $ xss
endsWithZeros = all (all (=='0')) (take 1 (reverse xss))
nearby xs xs' = length [() | (x, x') <- zip xs xs', x /= x'] == 1
The cyclic condition applies only to completed codes, and can be written as:
cyclic xss = nearby (head xss) (last xss)
We can implement the search and enforce the length condition at the same time, by repeatedly choosing from all appropriate length bitstrings, and keeping only those ones that are valid:
codes n = go (2^n) [] where
go 0 code = [reverse code | cyclic code]
go i code = do
continuation <- replicateM n "01"
guard (validCodePrefix (continuation:code))
go (i-1) (continuation:code)

Related

Haskell group elements in the list and concatenate different adjacent element together

The group function in Data.List can group the same element in a list
Input:
import Data.List(group)
group "mississippi time"
Output:
["m","i","ss","i","ss","i","pp","i"," ","t","i","m","e"]
How to modify the group function to group the different adjacent elements together?
Expect:
["mi","ss","i","ss","i","pp","i time"]
Below is my WRONG solution.
I try to group the same elements and then group the different elements. When grouping different elements, I also check the length of each element. Since after groupSame, different elements are left alone.
-- |
-- >>> groupSame "mississippi time"
-- ["m","i","ss","i","ss","i","pp","i"," ","t","i","m","e"]
groupSame :: String -> [String]
groupSame [] = []
groupSame (x:xs) = (x : takeWhile (== x) xs) : groupSame (dropWhile (== x) xs)
-- >>> groupDiff ["m","i","ss","i","ss","i","pp","i"," ","t","i","m","e"]
-- ["mi","ss","i","ss","i","pp","i time"]
groupDiff :: [String] -> [String]
groupDiff [] = []
groupDiff [x] = [x]
groupDiff (x:y:xs)
|length x > 1 && length y > 1 = x:y : groupDiff xs
|length x > 1 && length y ==1 = x: groupDiff (y:xs)
|length x ==1 && length y > 1 = x:y: groupDiff xs
|length x ==1 && length y ==1 = (x++y): groupDiff xs
The expected output is above the groupDiff signature.
However I got:
["mi","ss","i","ss","i","pp","i"," t","im","e"]
What about this?
map concat $ groupBy (\x y -> all ((== 1) . length) [x, y]) $ group "mississippi time"
I guess the lambda can be shortened somehow.
I guess (== 1) . length could be named isSingleton.
And, it could be implemented as null . tail to save some parenthesis, fwiw:
map concat $ groupBy (\x y -> all (null . tail) [x, y]) $ group "mississippi time"
With some more playing, you can even get rid of variables x and y and write it in point-free style, provided you write an alternative of all for pairs,
all' p (a, b) = p a && p b
map concat $ groupBy (curry $ all' (null . tail)) $ group "mississippi time"
but this is likely less readable.
You need import Data.List (groupBy) too.
Somebody else explained to you in a comment why your solution does not work.
My point, however, is that you shouldn't reach for such complicated solutions in the first place.
Hand-made recursion is a powerful tool, but for such a simple tast is just too much powerful; indeed, you get lost into details.
If you know that you just want to group things in some way, then reach out for functions that are for grouping, like group and groupBy, and see how you can combine them together to get what you want.
That's how I crafted my solution (which, performance-wise, might be not optimal), by just writing down what I wanted to do,
group letters by equality (thus obtaining strings of different lengths)
group together the adjacent strings that have length 1
concatenate the strings in each of the groups
and then extracting the functions I need from the key parts of my plan:
group by equality: that's what group does
group strings that have length 1: groupBy allows grouping given a predicate other than equality, length can compute the length, and (== 1) is for checking if a number is 1
concatenate the strings: concat does just that (for any list, not just strings, btw)
in each of the groups: that means I have to map on the list of groups.
Given the above, I got here:
map concat $ groupBy (\x y -> doTheyGoTogether) $ group "mississippi time"
where I knew doTheyGoTogether would use (== 1) . length somehow. Not a huge leap to understand that (== 1) . length should be true for all of x and y: doTheyGoTogether = all ((== 1) . length).
P.S: Hoogle is your friend.

How do i "put a restriction" on a list of permutations and subsequences of a list?

I'm really new to programming and Haskell in particular (so new that I actually don't know if this is a stupid question or not). But I was watching the lecture given by Eric Meijer (http://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals) and i was fascinated by the program written by Dr. Graham Hutton in lecture 11; The countdown problem.
My question is:
Is there a way of "filtering" the list of solutions by the length (number of elements), so that the list of solutions are restricted to the solutions that only uses (for example) three of the source numbers? In other words, I would like to change the question from "given the numbers [1,2,3,4,5,6,8,9] construct 18 using the operators..." to "given the numbers [..] which three numbers can be used to construct..."
In my futile attempts, I've been trying to put a kind restriction on his function subbags (which returns all permutations and subsequences of a list)
subbags :: [a] -> [[a]]
subbags xs = [zs | ys <- subs xs, zs <- perms ys]
So that I get all the permutations and subsequences that only contain three of the source numbers. Is this possible? If so, how?
Like I said, I have no idea if this is even a legitimate question - but I have gone from curious to obsessed, so any form of help or hint would be greatly appreciated!
The simplest way would be to just select from the candidates three times
[ (x, y, z) | x <- xs, y <- xs, z <- xs ]
although this assumes that repeat use of a single number is OK.
If it's not, we'll have to get smarter. In a simpler scenario we'd like to pick just two candidates:
[ (x, y) | x <- xs, y <- ys, aboveDiagonal (x, y) ]
in other words, if we think of this as a cartesian product turning a list into a grid of possibilities, we'd like to only consider the values "above the diagonal", where repeats don't happen. We can express this by zipping the coordinates along with the values
[ (x, y) | (i, x) <- zip [1..] xs
, (j, y) <- zip [1..] xs
, i < j
]
which can be extended back out to the n=3 scenario
[ (x, y, z) | (i, x) <- zip [1..] xs
, (j, y) <- zip [1..] xs
, (k, z) <- zip [1..] xs
, i < j
, j < k
]
Ultimately, however, this method is inefficient since it still has to scan through all of the possible pairs and then prune the repeats. We can be a bit smarter by only enumerating the above diagonal values to begin with. Returning to n=2 we'll write this as
choose2 :: [a] -> [(a, a)]
choose2 [] = []
choose2 (a:as) = map (a,) as ++ choose2 as
In other words, we pick first all of the pairs where the head of the list comes first and a value in the tail of the list comes second—this captures one edge of the upper triangle—and then we recurse by adding all of the upper diagonal values of the list of candidates sans the head.
This method can be straightforwardly extended to the n=3 case by using the n=2 case as a building block
choose3 :: [a] -> [(a, a, a)]
choose3 [] = []
choose3 (a:as) = map (\(y, z) -> (a, y, z)) (choose2 as) ++ choose3 as
which also provides a direct generalization to the fully general n dimensional solution
choose :: Int -> [a] -> [[a]]
choose 0 as = [[]] -- there's one way to choose 0 elements
choose _ [] = [] -- there are 0 ways to choose (n>0) elements of none
choose 1 as = map (:[]) as -- there are n ways to choose 1 element of n
choose n (a:as) = map (a:) (choose (n-1) as) ++ choose n as
I like this solution, which does not require the list elements to be an instance of Eq:
import Data.List (tails)
triples ls = [[x,y,z] | (x:xs) <- tails ls,
(y:ys) <- tails xs,
z <- ys]
This returns only subsequences, not permutations, though.

Dovetail iteration over infinite lists in Haskell

I want to iterate 2 (or 3) infinite lists and find the "smallest" pair that satisfies a condition, like so:
until pred [(a,b,c) | a<-as, b<-bs, c<-cs]
where pred (a,b,c) = a*a + b*b == c*c
as = [1..]
bs = [1..]
cs = [1..]
The above wouldn't get very far, as a == b == 1 throughout the run of the program.
Is there a nice way to dovetail the problem, e.g. build the infinite sequence [(1,1,1),(1,2,1),(2,1,1),(2,1,2),(2,2,1),(2,2,2),(2,2,3),(2,3,2),..] ?
Bonus: is it possible to generalize to n-tuples?
There's a monad for that, Omega.
Prelude> let as = each [1..]
Prelude> let x = liftA3 (,,) as as as
Prelude> let x' = mfilter (\(a,b,c) -> a*a + b*b == c*c) x
Prelude> take 10 $ runOmega x'
[(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13),(12,5,13),(9,12,15),(12,9,15),(8,15,17),(15,8,17)]
Using it's applicative features, you can generalize to arbitrary tuples:
quadrupels = (,,,) <$> as <*> as <*> as <*> as -- or call it liftA4
But: this alone does not eliminate duplication, of course. It only gives you proper diagonalization. Maybe you could use monad comprehensions together with an approach like Thomas's, or just another mfilter pass (restricting to b /= c, in this case).
List comprehensions are great (and concise) ways to solve such problems. First, you know you want all combinations of (a,b,c) that might satisfy a^2 + b^2 = c^2 - a helpful observation is that (considering only positive numbers) it will always be the case that a <= c && b <= c.
To generate our list of candidates we can thus say c ranges from 1 to infinity while a and b range from one to c.
[(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c]]
To get to the solution we just need to add your desired equation as a guard:
[(a,b,c) | c <- [1..], a <- [1..c], b <- [1..c], a*a+b*b == c*c]
This is inefficient, but the output is correct:
[(3,4,5),(4,3,5),(6,8,10),(8,6,10),(5,12,13),(12,5,13),(9,12,15)...
There are more principled methods than blind testing that can solve this problem.
{- It depends on what is "smallest". But here is a solution for a concept of "smallest" if tuples were compared first by their max. number and then by their total sum. (You can just copy and paste my whole answer into a file as I write the text in comments.)
We will need nub later. -}
import Data.List (nub)
{- Just for illustration: the easy case with 2-tuples. -}
-- all the two-tuples where 'snd' is 'n'
tuples n = [(i, n) | i <- [1..n]]
-- all the two-tuples where 'snd' is in '1..n'
tuplesUpTo n = concat [tuples i | i <- [1..n]]
{-
To get all results, you will need to insert the flip of each tuple into the stream. But let's do that later and generalize first.
Building tuples of arbitrary length is somewhat difficult, so we will work on lists. I call them 'kList's, if they have a length 'k'.
-}
-- just copied from the tuples case, only we need a base case for k=1 and
-- we can combine all results utilizing the list monad.
kLists 1 n = [[n]]
kLists k n = do
rest <- kLists (k-1) n
add <- [1..head rest]
return (add:rest)
-- same as above. all the klists with length k and max number of n
kListsUpTo k n = concat [kLists k i | i <- [1..n]]
-- we can do that unbounded as well, creating an infinite list.
kListsInf k = concat [kLists k i | i <- [1..]]
{-
The next step is rotating these lists around, because until now the largest number is always in the last place. So we just look at all rotations to get all the results. Using nub here is admittedly awkward, you can improve that. But without it, lists where all elements are the same are repeated k times.
-}
rotate n l = let (init, end) = splitAt n l
in end ++ init
rotations k l = nub [rotate i l | i <- [0..k-1]]
rotatedKListsInf k = concatMap (rotations k) $ kListsInf k
{- What remains is to convert these lists into tuples. This is a bit awkward, because every n-tuple is a separate type. But it's straightforward, of course. -}
kListToTuple2 [x,y] = (x,y)
kListToTuple3 [x,y,z] = (x,y,z)
kListToTuple4 [x,y,z,t] = (x,y,z,t)
kListToTuple5 [x,y,z,t,u] = (x,y,z,t,u)
kListToTuple6 [x,y,z,t,u,v] = (x,y,z,t,u,v)
{- Some tests:
*Main> take 30 . map kListToTuple2 $ rotatedKListsInf 2
[(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(2,3),(3,2),(3,3),(1,4),(4,1),(2,4),(4,2),(3,4),
(4,3),(4,4),(1,5),(5,1),(2,5),(5,2),(3,5),(5,3),(4,5),(5,4),(5,5),(1,6),(6,1),
(2,6), (6,2), (3,6)]
*Main> take 30 . map kListToTuple3 $ rotatedKListsInf 3
[(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,2,1),(2,1,2),(2,2,2),(1,1,3),(1,3,1),
(3,1,1),(1,2,3),(2,3,1),(3,1,2),(2,2,3),(2,3,2),(3,2,2),(1,3,3),(3,3,1),(3,1,3),
(2,3,3),(3,3,2),(3,2,3),(3,3,3),(1,1,4),(1,4,1),(4,1,1),(1,2,4),(2,4,1),(4,1,2)]
Edit:
I realized there is a bug: Just rotating the ordered lists isn't enough of course. The solution must be somewhere along the lines of having
rest <- concat . map (rotations (k-1)) $ kLists (k-1) n
in kLists, but then some issues with repeated outputs arise. You can figure that out, I guess. ;-)
-}
It really depends on what you mean by "smallest", but I assume you want to find a tuple of numbers with respect to its maximal element - so (2,2) is less than (1,3) (while standard Haskell ordering is lexicographic).
There is package data-ordlist, which is aimed precisely at working with ordered lists. It's function mergeAll (and mergeAllBy) allows you to combine a 2-dimensional matrix ordered in each direction into an ordered list.
First let's create a desired comparing function on tuples:
import Data.List (find)
import Data.List.Ordered
compare2 :: (Ord a) => (a, a) -> (a, a) -> Ordering
compare2 x y = compare (max2 x, x) (max2 y, y)
where
max2 :: Ord a => (a, a) -> a
max2 (x, y) = max x y
Then using mergeAll we create a function that takes a comparator, a combining function (which must be monotonic in both arguments) and two sorted lists. It combines all possible elements from the two lists using the function and produces a result sorted list:
mergeWith :: (b -> b -> Ordering) -> (a -> a -> b) -> [a] -> [a] -> [b]
mergeWith cmp f xs ys = mergeAllBy cmp $ map (\x -> map (f x) xs) ys
With this function, it's very simple to produce tuples ordered according to their maximum:
incPairs :: [(Int,Int)]
incPairs = mergeWith compare2 (,) [1..] [1..]
Its first 10 elements are:
> take 10 incPairs
[(1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2),(3,3),(1,4)]
and when we (for example) look for the first pair whose sum of squares is equal to 65:
find (\(x,y) -> x^2+y^2 == 65) incPairs
we get the correct result (4,7) (as opposed to (1,8) if lexicographic ordering were used).
This answer is for a more general problem for a unknown predicate. If the predicate is known, more efficient solutions are possible, like others have listed solutions based on knowledge that you don't need to iterate for all Ints for a given c.
When dealing with infinite lists, you need to perform breadth-first search for solution. The list comprehension only affords depth-first search, that is why you never arrive at a solution in your original code.
counters 0 xs = [[]]
counters n xs = concat $ foldr f [] gens where
gens = [[x:t | t <- counters (n-1) xs] | x <- xs]
f ys n = cat ys ([]:n)
cat (y:ys) (x:xs) = (y:x): cat ys xs
cat [] xs = xs
cat xs [] = [xs]
main = print $ take 10 $ filter p $ counters 3 [1..] where
p [a,b,c] = a*a + b*b == c*c
counters generates all possible counters for values from the specified range of digits, including a infinite range.
First, we obtain a list of generators of valid combinations of counters - for each permitted digit, combine it with all permitted combinations for counters of smaller size. This may result in a generator that produces a infinite number of combinations. So, we need to borrow from each generator evenly.
So gens is a list of generators. Think of this as a list of all counters starting with one digit: gens !! 0 is a list of all counters starting with 1, gens !! 1 is a list of all counters starting with 2, etc.
In order to borrow from each generator evenly, we could transpose the list of generators - that way we would get a list of first elements of the generators, followed by a list of second elements of the generators, etc.
Since the list of generators may be infinite, we cannot afford to transpose the list of generators, because we may never get to look at the second element of any generator (for a infinite number of digits we'd have a infinite number of generators). So, we enumerate the elements from the generators "diagonally" - take first element from the first generator; then take the second element from the first generator and the first from the second generator; then take the third element from the first generator, the second from the second, and the first element from the third generator, etc. This can be done by folding the list of generators with a function f, which zips together two lists - one list is the generator, the other is the already-zipped generators -, the beginning of one of them being offset by one step by adding []: to the head. This is almost zipWith (:) ys ([]:n) - the difference is that if n or ys is shorter than the other one, we don't drop the remainder of the other list. Note that folding with zipWith (:) ys n would be a transpose.
For this answer I will take "smallest" to refer to the sum of the numbers in the tuple.
To list all possible pairs in order, you can first list all of the pairs with a sum of 2, then all pairs with a sum of 3 and so on. In code
pairsWithSum n = [(i, n-i) | i <- [1..n-1]]
xs = concatMap pairsWithSum [2..]
Haskell doesn't have facilities for dealing with n-tuples without using Template Haskell, so to generalize this you will have to switch to lists.
ntuplesWithSum 1 s = [[s]]
ntuplesWithSum n s = concatMap (\i -> map (i:) (ntuplesWithSum (n-1) (s-i))) [1..s-n+1]
nums n = concatMap (ntuplesWithSum n) [n..]
Here's another solution, with probably another slightly different idea of "smallest". My order is just "all tuples with max element N come before all tuples with max element N+1". I wrote the versions for pairs and triples:
gen2_step :: Int -> [(Int, Int)]
gen2_step s = [(x, y) | x <- [1..s], y <- [1..s], (x == s || y == s)]
gen2 :: Int -> [(Int, Int)]
gen2 n = concatMap gen2_step [1..n]
gen2inf :: [(Int, Int)]
gen2inf = concatMap gen2_step [1..]
gen3_step :: Int -> [(Int, Int, Int)]
gen3_step s = [(x, y, z) | x <- [1..s], y <- [1..s], z <- [1..s], (x == s || y == s || z == s)]
gen3 :: Int -> [(Int, Int, Int)]
gen3 n = concatMap gen3_step [1..n]
gen3inf :: [(Int, Int, Int)]
gen3inf = concatMap gen3_step [1..]
You can't really generalize it to N-tuples, though as long as you stay homogeneous, you may be able to generalize it if you use arrays. But I don't want to tie my brain into that knot.
I think this is the simplest solution if "smallest" is defined as x+y+z because after you find your first solution in the space of Integral valued pythagorean triangles, your next solutions from the infinite list are bigger.
take 1 [(x,y,z) | y <- [1..], x <- [1..y], z <- [1..x], z*z + x*x == y*y]
-> [(4,5,3)]
It has the nice property that it returns each symmetrically unique solution only once. x and z are also infinite, because y is infinite.
This does not work, because the sequence for x never finishes, and thus you never get a value for y, not to mention z. The rightmost generator is the innermost loop.
take 1 [(z,y,x)|z <- [1..],y <- [1..],x <- [1..],x*x + y*y == z*z]
Sry, it's quite a while since I did haskell, so I'm going to describe it with words.
As I pointed out in my comment. It is not possible to find the smallest anything in an infinite list, since there could always be a smaller one.
What you can do is, have a stream based approach that takes the lists and returns a list with only 'valid' elements, i. e. where the condition is met. Lets call this function triangle
You can then compute the triangle list to some extent with take n (triangle ...) and from this n elements you can find the minium.

Haskell - Most frequent value

how can i get the most frequent value in a list example:
[1,3,4,5,6,6] -> output 6
[1,3,1,5] -> output 1
Im trying to get it by my own functions but i cant achieve it can you guys help me?
my code:
del x [] = []
del x (y:ys) = if x /= y
then y:del x y
else del x ys
obj x []= []
obj x (y:ys) = if x== y then y:obj x y else(obj x ys)
tam [] = 0
tam (x:y) = 1+tam y
fun (n1:[]) (n:[]) [] =n1
fun (n1:[]) (n:[]) (x:s) =if (tam(obj x (x:s)))>n then fun (x:[]) ((tam(obj x (x:s))):[]) (del x (x:s)) else(fun (n1:[]) (n:[]) (del x (x:s)))
rep (x:s) = fun (x:[]) ((tam(obj x (x:s))):[]) (del x (x:s))
Expanding on Satvik's last suggestion, you can use (&&&) :: (b -> c) -> (b -> c') -> (b -> (c, c')) from Control.Arrow (Note that I substituted a = (->) in that type signature for simplicity) to cleanly perform a decorate-sort-undecorate transform.
mostCommon list = fst . maximumBy (compare `on` snd) $ elemCount
where elemCount = map (head &&& length) . group . sort $ list
The head &&& length function has type [b] -> (b, Int). It converts a list into a tuple of its first element and its length, so when it is combined with group . sort you get a list of each distinct value in the list along with the number of times it occurred.
Also, you should think about what happens when you call mostCommon []. Clearly there is no sensible value, since there is no element at all. As it stands, all the solutions proposed (including mine) just fail on an empty list, which is not good Haskell. The normal thing to do would be to return a Maybe a, where Nothing indicates an error (in this case, an empty list) and Just a represents a "real" return value. e.g.
mostCommon :: Ord a => [a] -> Maybe a
mostCommon [] = Nothing
mostCommon list = Just ... -- your implementation here
This is much nicer, as partial functions (functions that are undefined for some input values) are horrible from a code-safety point of view. You can manipulate Maybe values using pattern matching (matching on Nothing and Just x) and the functions in Data.Maybe (preferable fromMaybe and maybe rather than fromJust).
In case you would like to get some ideas from code that does what you wish to achieve, here is an example:
import Data.List (nub, maximumBy)
import Data.Function (on)
mostCommonElem list = fst $ maximumBy (compare `on` snd) elemCounts where
elemCounts = nub [(element, count) | element <- list, let count = length (filter (==element) list)]
Here are few suggestions
del can be implemented using filter rather than writing your own recursion. In your definition there was a mistake, you needed to give ys and not y while deleting.
del x = filter (/=x)
obj is similar to del with different filter function. Similarly here in your definition you need to give ys and not y in obj.
obj x = filter (==x)
tam is just length function
-- tam = length
You don't need to keep a list for n1 and n. I have also made your code more readable, although I have not made any changes to your algorithm.
fun n1 n [] =n1
fun n1 n xs#(x:s) | length (obj x xs) > n = fun x (length $ obj x xs) (del x xs)
| otherwise = fun n1 n $ del x xs
rep xs#(x:s) = fun x (length $ obj x xs) (del x xs)
Another way, not very optimal but much more readable is
import Data.List
import Data.Ord
rep :: Ord a => [a] -> a
rep = head . head . sortBy (flip $ comparing length) . group . sort
I will try to explain in short what this code is doing. You need to find the most frequent element of the list so the first idea that should come to mind is to find frequency of all the elements. Now group is a function which combines adjacent similar elements.
> group [1,2,2,3,3,3,1,2,4]
[[1],[2,2],[3,3,3],[1],[2],[4]]
So I have used sort to bring elements which are same adjacent to each other
> sort [1,2,2,3,3,3,1,2,4]
[1,1,2,2,2,3,3,3,4]
> group . sort $ [1,2,2,3,3,3,1,2,4]
[[1,1],[2,2,2],[3,3,3],[4]]
Finding element with the maximum frequency just reduces to finding the sublist with largest number of elements. Here comes the function sortBy with which you can sort based on given comparing function. So basically I have sorted on length of the sublists (The flip is just to make the sorting descending rather than ascending).
> sortBy (flip $ comparing length) . group . sort $ [1,2,2,3,3,3,1,2,4]
[[2,2,2],[3,3,3],[1,1],[4]]
Now you can just take head two times to get the element with the largest frequency.
Let's assume you already have argmax function. You can write
your own or even better, you can reuse list-extras package. I strongly suggest you
to take a look at the package anyway.
Then, it's quite easy:
import Data.List.Extras.Argmax ( argmax )
-- >> mostFrequent [3,1,2,3,2,3]
-- 3
mostFrequent xs = argmax f xs
where f x = length $ filter (==x) xs

Finding n such that f n is maximized in Haskell

I am using Project Euler problems to learn Haskell and I find a recurring theme in many of these problems where I need to find a value n that gives some property (usually minimum or maximum) to a function f n. As I build up a solution, I often find it convenient to create a list of pairs (n, f n). This helps me quickly see if I have any errors in my logic because I can check against the examples given in the problem statement. Then I "filter" out the single pair that gives the solution. My solution to problem 47 is an example:
-- Problem 47
import Data.List
import ProjectEuler
main = do
print (fst (head (filter (\(n, ds) -> (all (==consecutiveCount) ds))
(zip ns (map (map length)
(map (map primeDivisors) consecutives))))))
where consecutiveCount = 4
consecutive n start = take n [start..]
consecutives = map (consecutive consecutiveCount) ns
ns = [1..]
It seems to me that there's a more "haskelly" way to do this. Is there?
Use maximumBy from Data.List with comparing from Data.Ord, e.g.
maximumBy (comparing snd) [(n, f n) | n <- ns]
this will compute f once for each n. If f is cheap to compute, you can go with the simpler
maximumBy (comparing f) ns
Well, you could write your function as
main = print $ fst $ head
[ (x,ds) | x <- [1..]
, let ds=map primeDivisors [x..x+3], all ((==4).length) ds]
You could consider it "more Haskelly" to use Control.Arrow's (&&&), or "fan-out"
filter (all ((==4).length).snd)
. map (id &&& (\x-> map primeDivisors [x..x+3])) $ [1..]
To be able to tweak the code to try the simple examples first, you'd usually make it a function, abstracting over the variable(s) of interest, like so:
test n m = [ x | x <- [1..], all (==n) $ map (length.primeDivisors) [x..x+m-1]]
to search for m consequitive numbers each having n distinct prime factors. There is actually no need to carry the factorizations along in the final code.

Resources